Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Wassertropfen als Modell für das Wechselspiel von Haftreibung und Adhäsion

30.06.2016

Physiker haben an der Universität Zürich ein System entwickelt, mit dem sie Adhäsion und Haftreibung eines Wassertropfens auf einer festen Oberfläche elektrisch hin und her schalten können. Die Spannungsänderung äussert sich makroskopisch im Kontaktwinkel zwischen Tropfen und Oberfläche. Zurückführen lässt sich dieser Effekt auf die Veränderung der Oberflächenbeschaffenheit im Nanometerbereich.

Wie kommt es, dass sich ein Gecko kopfüber an einer Decke fortbewegen kann? Zwei Mechanismen sind dafür verantwortlich: Die Adhäsion durch Milliarden feinster Härchen an seinen Füssen lässt ihn an Decken und Wänden kleben. Sobald sich der Gecko bewegt, verlässt er sich auf die Haftreibung. Die Änderung von Adhäsion und Haftreibung auf der makroskopischen Ebene äussert sich auf der Nanometerskala durch die Änderung der Kräfte, die zwischen Atomen und Molekülen wirken.


Elektrochemie in einem Tropfen: Überlagerung von 7 dynamischen Kontaktwinkelmessungen zwischen Wassertropfen und Oberfläche; Durchmesser vertikale Kapillare 0,85 mm.

UZH


Bienenwabenförmiges Nanomesh: Bornitrid-Struktur aus Stickstoff (grün) und Bor (orange) auf Rhodium (grau); Wabenabstand 3,2 nm.

Marcella Iannuzzi, UZH & Ari Seitsonen, ENS Paris

Wie ein Wassertropfen eine bienenwabenförmige Struktur berührt

Einem internationalen Forscherteam unter der Leitung von Thomas Greber vom Physik-Institut der Universität Zürich ist es gelungen, die Art und Weise, wie ein Flüssigkeitstropfen auf einer festen Oberfläche haftet, hin und her zu schalten.

Dies geschieht durch die Veränderung der elektrischen Spannung, die an einen Wassertropfen angelegt wird. Die Oberfläche, auf welcher der Tropfen liegt, besteht aus einem Material genannt Nanomesh. Dabei handelt es sich um eine einzelne Bornitrid-Schicht auf metallischem Rhodium. Die Struktur hat die Form einer Bienenwabe mit einer Wabentiefe von 0,1 Nanometern und einem Wabenabstand von 3,2 Nanometern.

Makroskopisch äussert sich die Änderung der elektrischen Spannung in der Änderung des Kontaktwinkels zwischen Tropfen und Nanomesh-Oberfläche. Mit Kontakt- oder Benetzungswinkel bezeichnet man den Winkel, den ein Flüssigkeitstropfen zur Oberfläche eines Feststoffs bildet. Messen lässt sich dieser Winkel mit Hilfe von Fotografien im Gegenlicht.

Veränderung der Oberflächenstruktur ändert den Kontaktwinkel des Tropfens

Auf der Nanometerskala geschieht durch die Spannungsänderung Folgendes: Die Stickstoffbindungen zum Rhodium werden durch Wasserstoff-Rhodium-Bindungen ersetzt, wodurch sich die Nanomesh-Struktur auflöst. Wie stark der Stickstoff des Bornitrids an die Rhodium-Oberfläche bindet, ist abhängig von dessen Abstand und Richtung zum nächsten Rhodium-Atom.

Und dies bestimmt die Wabentiefe der Bornitrid-Schicht. Ändert sich die Spannung, lagert sich Wasserstoff zwischen Bornitrid- und Rhodium-Schicht, was dazu führt, dass die wabenförmige Bornitrid-Struktur flach wird. Mittels Tunnelmikroskopie lässt sich dieser nanoskopische Effekt – die Veränderung der Oberflächenbeschaffenheit des Nanomesh – in der Flüssigkeit nachweisen.

«Das Zusammenspiel zwischen der Makro- und der Nano-Welt zu verstehen und zu kontrollieren ist die eigentliche Herausforderung in der Nanowissenschaft», betont Greber. Denn dabei geht es um die Überbrückung von sechs Längengrössenordnungen – von Millimeter (10-3 m) zu Nanometer (10-9 m) – also einem Faktor von einer Million. «Unser Modellsystem des elektrisch schaltbaren Nanomesh und dem beobachtbaren Kontaktwinkel eines Tropfens erlaubt es, das fundamentale Phänomen der Reibung von Flüssigkeiten an Oberflächen genauer zu verstehen. Dies dürfte helfen, um Probleme wie sie zum Beispiel bei der Schmierung auftreten, besser lösen zu können.» Die Forschungsarbeit erscheint in der neuen Ausgabe der renommierten Fachzeitschrift Nature – auf der Titelseite.

Interessant ist das neue System einerseits für die Biologie. Die Anwendung dieses Effekts sollte es ermöglichen, die Adhäsion und Wanderung von Zellen kontrolliert zu steuern. Dadurch lassen sich Aspekte wie die Zellmigration oder die Bildung komplexer mehrzelliger Strukturen mit neuen wissenschaftlichen Ansätzen erforschen. Denkbar sind andererseits technologische Anwendungen wie Kapillarpumpen, bei denen die Kapillarhöhe durch die elektrische Spannung kontrolliert werden kann oder Mikrokapillaren, bei denen sich der Strömungswiderstand steuern lässt.

Literatur:
Stijn F. L. Mertens, Adrian Hemmi, Stefan Muff, Oliver Gröning, Steven De Feyter, Jürg Osterwalder, Thomas Greber. Switching stiction and adhesion of a liquid on a solid. Nature. June 30, 2016.
DOI: 10.1038/nature18275

Zur Studie
Die Forschungsergebnisse entstanden im Rahmen des Sinergia-Programms des Schweizerischen Nationalfonds (SNF). Der SNF fördert mit diesem Instrument die Zusammenarbeit von mehreren Forschungsgruppen, die interdisziplinär und mit Aussicht auf bahnbrechende Erkenntnisse forschen. Beteiligt waren neben der Universität Zürich die Katholieke Universiteit Leuven, die Technische Universität Wien und die Empa.

Kontakt:
Prof. Dr. Thomas Greber
Physik-Institut
Universität Zürich
+41 44 635 57 44
E-Mail: greber@physik.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2016/adhaesion-haftreibung.html

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kosmische Schlange
20.11.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht InSight: Touchdown auf dem Mars
19.11.2018 | Max-Planck-Institut für Sonnensystemforschung

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics