Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein ultraschnelles Mikroskop für die Quantenwelt

24.01.2020

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für Festkörperforschung in Stuttgart forschen, haben ein Mikroskop für die extrem schnellen Prozesse in der Quantenwelt entwickelt.


Auflösung auf die Spitze getrieben: Mit einer Kombination von ultrakurzen Laserpulsen (rot) und einem Rastertunnelmikrskop filmen Forscher des Max-Planck-Instituts für Festkörperforschung Vorgänge in der Quantenwelt. Sie fokussieren die Laserblitze auf den winzigen Zwischenraum zwischen der Mikroskopspitze und der Probenoberfläche und lösen so den Tunnelvorgang, bei dem Elektronen (blau) die Lücke zwischen der Spitze und der Probe überwinden. So erreichen sie eine zeitliche Auflösung von einigen hundert Attosekunden, wenn sie Quantenprozesse wie eine elektronisches Wellenpaket (farbige Welle) mit atomarer Ortsauflösung abbilden.

© Dr. Christian Hackenberger

Dieses Mikroskop – eine Art HD-Kamera für die Quantenwelt – erlaubt es, die Bewegungen von Elektronen bis auf ein Atom genau verfolgen. Daher dürfte es hilfreiche Erkenntnisse etwa für die Entwicklung extrem schneller und extrem kleiner elektronischer Komponenten liefern.

Die Vorgänge in der Quantenwelt machen es selbst den gewieftesten Physikern schwer. Was etwa in den immer leistungsfähigeren Bauteilen von Computern oder Smartphones passiert, läuft nicht nur extrem schnell ab, sondern auch auf immer kleinerem Raum. Um diese Prozesse zu analysieren und etwa Transistoren zu optimieren, würden ihnen Filme der Elektronen sehr helfen.

Dafür benötigen Forschende eine Hochgeschwindigkeitskamera, die jedes einzelne Bild eines solchen Elektronenfilms nur für einige 100 Attosekunden belichtet. Eine Attosekunde ist der Milliardste Teil einer Milliardstel Sekunde; in dieser Zeit legt Licht gerade einmal die Strecke durch ein Wassermolekül zurück. Als Attosekunden-Kamera nutzt die Physik seit einigen Jahren entsprechend kurze Laserpulse.

Bislang liefert eine Attosekunden-Aufnahme aber nur den Schnappschuss eines Elektrons vor quasi verwischtem Hintergrund. Dank der Arbeit von Klaus Kern, Direktor am Max-Planck-Institut für Festkörperforschung, und Manish Garg, Wissenschaftler in seiner Abteilung, können Forschende nun aber auch auf ein Atom genau erkennen, wo sich das gefilmte Elektron befindet.

Ultrakurze Laserblitze kombiniert mit einem Rastertunnelmikroskop

Die beiden Physiker setzen dabei auf ultrakurze Laserblitze und ein Rastertunnelmikroskop. Letzteres erreicht eine atomgenaue Auflösung, weil es eine Oberfläche mit einer Spitze abtastet, die bestenfalls selbst nur aus einem Atom besteht. Zwischen der Spitze und der Oberfläche tunneln Elektronen, das heißt sie überwinden den Raum dazwischen, obwohl sie dafür eigentlich nicht genug Energie mitbringen.

Wie gut dieser Tunnelprozess klappt, hängt stark von der zurückzulegenden Distanz ab. Er eignet sich daher, um den Abstand zwischen der Spitze und einer Probe zu messen und kann so selbst einzelne Atome und Moleküle auf einer Oberfläche abbilden. Ein Rastertunnelmikroskop erlaubte bislang aber keine Zeitauflösung, die ausreicht, um Elektronen zu verfolgen.

„Indem wir ein Rastertunnelmikroskop mit ultraschnellen Pulsen kombinieren, haben wir auf bequeme Weise die Vorteile der beiden Methoden genutzt, um ihre jeweiligen Nachteile auszugleichen“ sagt Manish Garg. Mit den extrem kurzen Lichtblitzen feuern die Forscher auf die atomgenau positionierte Mikroskopspitze und lösen so den Tunnelprozess aus. Die Hochgeschwindigkeitskamera für die Quantenwelt erreicht auf diese Weise jetzt auch HD-Auflösung.

Auf dem Weg zu einer millionenfach schnelleren Lichtwellenelektronik

Mit der neuen Technik können Physikerinnen und Physiker nun auf einige hundert Attosekunden und ein Atom genau messen, wann sich Elektronen wo befinden. Zum Beispiel in Molekülen, aus denen ein energiereicher Lichtblitz ein Elektron herauskatapultiert hat, sodass sich die verbleibenden negativen Ladungsträger neu arrangieren und das Molekül möglicherweise eine chemische Reaktion mit einem anderen Molekül eingeht.

„Elektronen in Molekülen live filmen zu können, und zwar in ihrer natürlichen örtlichen und zeitlichen Größenordnung, ist entscheidend, um beispielsweise die chemische Reaktivität und die Umwandlung von Lichtenergie in geladenen Teilchen wie etwa Elektronen oder Ionen zu verstehen“, sagt Klaus Kern, Direktor am Max-Planck-Institut für Festkörperforschung.

Außerdem ermöglicht es die Technik nicht nur, die Wege von Elektronen durch Prozessoren und Chips der Zukunft zu verfolgen. Sie kann die Ladungsträger auch drastisch beschleunigen: „Elektronen schwingen in heutigen Computern mit einer Frequenz von einer Milliarde Hertz“, sagt Klaus Kern.

„Mit ultrakurzen Lichtblitzen lässt sich ihre Frequenz möglicherweise auf eine Billiarde Hertz steigern.“ Mit diesem Turbo für Lichtwellen könnten Forschende den Weg zur Lichtwellenelektronik, die millionenfach schneller ist als gängige Computer, freimachen. So filmt das ultraschnelle Mikroskop Vorgänge in der Quantenwelt zum einen und führt dabei zum anderen Regie, indem sie darin eingreift.

Kontakt
Dr. Manish Garg
Max-Planck-Institut für Festkörperforschung, Stuttgart
+49 711 689-1639
+49 711 689-1637
M.Garg@fkf.mpg.de

Prof. Dr. Klaus Kern
Max-Planck-Institut für Festkörperforschung, Stuttgart
+49 711 689-1660
K.Kern@fkf.mpg.de


Originalveröffentlichung
Manish Garg und Klaus Kern
Attosecond coherent manipulation of electrons in tunneling microscopy
Science, 24. Januar 2020; doi: 10.1126/science.aaz1098

Newsletter | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Weitere Informationen:
https://www.mpg.de/14387017/mikroskop-attosekunde-quantenprozess

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation
30.03.2020 | Leibniz Universität Hannover

nachricht Stabile Blasen und ein Wasserläufer bewahren Stahl vor Erosion
30.03.2020 | Otto-von-Guericke-Universität Magdeburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

UN World Water Day 22 March: Water and climate change - How cities and their inhabitants can counter the consequences

17.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

30.03.2020 | Physik Astronomie

Brillen-Flora: das Miniversum vor der Nase

30.03.2020 | Biowissenschaften Chemie

Neue Materialien: Strahlendes Weiß ohne Pigmente

30.03.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics