Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein ultraschnelles Mikroskop für die Quantenwelt

24.01.2020

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für Festkörperforschung in Stuttgart forschen, haben ein Mikroskop für die extrem schnellen Prozesse in der Quantenwelt entwickelt.


Auflösung auf die Spitze getrieben: Mit einer Kombination von ultrakurzen Laserpulsen (rot) und einem Rastertunnelmikrskop filmen Forscher des Max-Planck-Instituts für Festkörperforschung Vorgänge in der Quantenwelt. Sie fokussieren die Laserblitze auf den winzigen Zwischenraum zwischen der Mikroskopspitze und der Probenoberfläche und lösen so den Tunnelvorgang, bei dem Elektronen (blau) die Lücke zwischen der Spitze und der Probe überwinden. So erreichen sie eine zeitliche Auflösung von einigen hundert Attosekunden, wenn sie Quantenprozesse wie eine elektronisches Wellenpaket (farbige Welle) mit atomarer Ortsauflösung abbilden.

© Dr. Christian Hackenberger

Dieses Mikroskop – eine Art HD-Kamera für die Quantenwelt – erlaubt es, die Bewegungen von Elektronen bis auf ein Atom genau verfolgen. Daher dürfte es hilfreiche Erkenntnisse etwa für die Entwicklung extrem schneller und extrem kleiner elektronischer Komponenten liefern.

Die Vorgänge in der Quantenwelt machen es selbst den gewieftesten Physikern schwer. Was etwa in den immer leistungsfähigeren Bauteilen von Computern oder Smartphones passiert, läuft nicht nur extrem schnell ab, sondern auch auf immer kleinerem Raum. Um diese Prozesse zu analysieren und etwa Transistoren zu optimieren, würden ihnen Filme der Elektronen sehr helfen.

Dafür benötigen Forschende eine Hochgeschwindigkeitskamera, die jedes einzelne Bild eines solchen Elektronenfilms nur für einige 100 Attosekunden belichtet. Eine Attosekunde ist der Milliardste Teil einer Milliardstel Sekunde; in dieser Zeit legt Licht gerade einmal die Strecke durch ein Wassermolekül zurück. Als Attosekunden-Kamera nutzt die Physik seit einigen Jahren entsprechend kurze Laserpulse.

Bislang liefert eine Attosekunden-Aufnahme aber nur den Schnappschuss eines Elektrons vor quasi verwischtem Hintergrund. Dank der Arbeit von Klaus Kern, Direktor am Max-Planck-Institut für Festkörperforschung, und Manish Garg, Wissenschaftler in seiner Abteilung, können Forschende nun aber auch auf ein Atom genau erkennen, wo sich das gefilmte Elektron befindet.

Ultrakurze Laserblitze kombiniert mit einem Rastertunnelmikroskop

Die beiden Physiker setzen dabei auf ultrakurze Laserblitze und ein Rastertunnelmikroskop. Letzteres erreicht eine atomgenaue Auflösung, weil es eine Oberfläche mit einer Spitze abtastet, die bestenfalls selbst nur aus einem Atom besteht. Zwischen der Spitze und der Oberfläche tunneln Elektronen, das heißt sie überwinden den Raum dazwischen, obwohl sie dafür eigentlich nicht genug Energie mitbringen.

Wie gut dieser Tunnelprozess klappt, hängt stark von der zurückzulegenden Distanz ab. Er eignet sich daher, um den Abstand zwischen der Spitze und einer Probe zu messen und kann so selbst einzelne Atome und Moleküle auf einer Oberfläche abbilden. Ein Rastertunnelmikroskop erlaubte bislang aber keine Zeitauflösung, die ausreicht, um Elektronen zu verfolgen.

„Indem wir ein Rastertunnelmikroskop mit ultraschnellen Pulsen kombinieren, haben wir auf bequeme Weise die Vorteile der beiden Methoden genutzt, um ihre jeweiligen Nachteile auszugleichen“ sagt Manish Garg. Mit den extrem kurzen Lichtblitzen feuern die Forscher auf die atomgenau positionierte Mikroskopspitze und lösen so den Tunnelprozess aus. Die Hochgeschwindigkeitskamera für die Quantenwelt erreicht auf diese Weise jetzt auch HD-Auflösung.

Auf dem Weg zu einer millionenfach schnelleren Lichtwellenelektronik

Mit der neuen Technik können Physikerinnen und Physiker nun auf einige hundert Attosekunden und ein Atom genau messen, wann sich Elektronen wo befinden. Zum Beispiel in Molekülen, aus denen ein energiereicher Lichtblitz ein Elektron herauskatapultiert hat, sodass sich die verbleibenden negativen Ladungsträger neu arrangieren und das Molekül möglicherweise eine chemische Reaktion mit einem anderen Molekül eingeht.

„Elektronen in Molekülen live filmen zu können, und zwar in ihrer natürlichen örtlichen und zeitlichen Größenordnung, ist entscheidend, um beispielsweise die chemische Reaktivität und die Umwandlung von Lichtenergie in geladenen Teilchen wie etwa Elektronen oder Ionen zu verstehen“, sagt Klaus Kern, Direktor am Max-Planck-Institut für Festkörperforschung.

Außerdem ermöglicht es die Technik nicht nur, die Wege von Elektronen durch Prozessoren und Chips der Zukunft zu verfolgen. Sie kann die Ladungsträger auch drastisch beschleunigen: „Elektronen schwingen in heutigen Computern mit einer Frequenz von einer Milliarde Hertz“, sagt Klaus Kern.

„Mit ultrakurzen Lichtblitzen lässt sich ihre Frequenz möglicherweise auf eine Billiarde Hertz steigern.“ Mit diesem Turbo für Lichtwellen könnten Forschende den Weg zur Lichtwellenelektronik, die millionenfach schneller ist als gängige Computer, freimachen. So filmt das ultraschnelle Mikroskop Vorgänge in der Quantenwelt zum einen und führt dabei zum anderen Regie, indem sie darin eingreift.

Kontakt
Dr. Manish Garg
Max-Planck-Institut für Festkörperforschung, Stuttgart
+49 711 689-1639
+49 711 689-1637
M.Garg@fkf.mpg.de

Prof. Dr. Klaus Kern
Max-Planck-Institut für Festkörperforschung, Stuttgart
+49 711 689-1660
K.Kern@fkf.mpg.de


Originalveröffentlichung
Manish Garg und Klaus Kern
Attosecond coherent manipulation of electrons in tunneling microscopy
Science, 24. Januar 2020; doi: 10.1126/science.aaz1098

Newsletter | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Weitere Informationen:
https://www.mpg.de/14387017/mikroskop-attosekunde-quantenprozess

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Physiker blicken mit Pikoskope in das Innere der atomaren Materie
01.07.2020 | Universität Rostock

nachricht Erstmals freigelegter Planetenkern entdeckt
01.07.2020 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Sanfter Wandkontakt – das passende Szenario für ein Fusionskraftwerk

Quasikontinuierliche Leistungsabfuhr als wandschonende Methode an ASDEX Upgrade entwickelt

Eine aussichtsreiche Betriebsweise für das Plasma eines späteren Kraftwerks wurde jetzt an der Fusionsanlage ASDEX Upgrade im Max-Planck-Institut für...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: Physiker blicken mit Pikoskope in das Innere der atomaren Materie

Wissenschaftlern aus den Arbeitsgruppen von Professor E. Goulielmakis vom Institut für Physik der Universität Rostock und dem Max-Planck-Institut für Quantenoptik in Garching ist es zusammen mit Mitarbeitern des Institutes für Physik der Chinesischen Akademie der Wissenschaften in Peking gelungen, ein neuartiges Lichtmikroskop (Picoscope) mit einer Auflösung von einigen zehn Pikometern zu entwickeln. Sie berichten im Journal „Nature“ jüngst, wie es gelungen ist Bilder zu erstellen, die zeigen, wie sich die Elektronenwolke im Kristallgitter von Festkörpern auf die Atome verteilt. Die Experimente ebnen den Weg zur Entwicklung einer neuen Klasse von laserbasierten Mikroskopen.

Seit der Erfindung des Lichtmikroskops durch Antonie van Leeuwenhoek im 17. Jahrhundert ist der Menschheit eine neue Welt im mikroskopisch Kleinen aufgegangen....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Das leichteste elektromagnetische Abschirmmaterial der Welt

02.07.2020 | Materialwissenschaften

Taifun veränderte Erdbebenaktivität

02.07.2020 | Geowissenschaften

Maßgeschneiderte Katalysatoren für Power-to-X

02.07.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics