Ein theoretischer Schritt zum Natrium-Akku

Ein deutsch-russisches Team konnte mit Hilfe von Computer-Simulationen zeigen, dass sich Natrium (gelb) – anders als bislang vermutet – nicht als einzelne Atomschicht, sondern mehrlagig zwischen zwei Graphen-Schichten (grau) anordnet. Foto: M. Ghorbani-Asl

Ende 2018 gelang einem Forschungsteam des Max-Planck-Instituts für Festkörperforschung in Stuttgart, der Universität Ulm und des HZDR ein bemerkenswertes Experiment: Als die Fachleute Lithium zwischen zwei dünne Graphen-Schichten einlagerten, bildete sich dazwischen nicht nur eine Lage von Lithiumatomen, sondern gleich mehrere Schichten.

„Es ist so, als würde man kleine Bälle zwischen zwei Blatt Papier legen“, erläutert HZDR-Physiker Dr. Arkady Krasheninnikov. „Stopft man immer mehr Bälle hinein, werden die Papierblätter auseinandergedrückt und lassen mehr Platz zwischen sich.“

Ein durchaus unerwartetes Resultat. Denn bei Graphit – einem engen Verwandten von Graphen – ließ sich meist nur die Einlagerung einzelner Lithium-Lagen zwischen den hauchdünnen Kohlenstoffschichten beobachten. In einem Artikel, den das Fachmagazin Nature veröffentlicht hat, konnte das Team den Prozess mittels ausgefeilter Computersimulationen auch theoretisch beschreiben.

Die Perspektive: Würde man statt den heute üblichen Graphit-Anoden künftig Graphen-Elektroden in Lithium-Akkus einbauen, ließen sich womöglich deutlich höhere Speicherkapazitäten erreichen.

Mehrfach statt einfach

Inspiriert von diesem Resultat widmete sich ein deutsch-russisches Team um Krasheninnikov nun einer neuen Frage: „Wenn die Sache mit der Mehrfach-Einlagerung bei Lithium funktioniert – könnte es dann auch bei anderen Alkalimetallen klappen, speziell bei Natrium?“

Schon länger gilt Natrium als vielversprechender Kandidat für die Akkutechnik: Da es viel häufiger als Lithium auf der Erde vorkommt, könnten sich damit deutlich preisgünstigere Batterien fertigen lassen. Das Problem: Bisherige Prototypen funktionieren unter anderem deshalb noch nicht besonders gut, weil sich Natrium nur widerwillig in die Graphitanoden begibt.

Um herauszufinden, ob Doppelschichten aus Graphen womöglich das Zeug haben, deutlich mehr Natrium einzulagern, initiierte die Arbeitsgruppe aus Dresden, Stuttgart und Moskau eine Reihe von aufwändigen Supercomputer-Simulationen.

„Dank des immensen Wachstums der Rechenleistung und der Entwicklung effizienter Algorithmen haben wir heute sehr leistungsfähige Methoden zur Hand, um neue Materialien zu untersuchen“, erklärt der Physiker. „Sie erlauben es, detaillierte Materialstrukturen und Eigenschaften vorauszusagen, ohne allzu viele Annahmen in die Berechnungen hineinzustecken, und haben sich in ihrer Aussagekraft als sehr zuverlässig herausgestellt.“

Neue Hoffnung für den Natrium-Akku

Das Resultat dieser Computerexperimente: Ebenso wie Lithium sollte sich auch Natrium nicht nur als eine Schicht, sondern in mehreren Lagen übereinander zwischen den Graphen-Blättchen einlagern können. Für die Batterieforschung ist das eine potentiell frohe Botschaft:

Womöglich weist das neue Resultat die Richtung, die die Entwicklung künftiger Anoden für preisgünstige Natrium-Akkus nehmen könnte. „Unsere Arbeit ist rein theoretischer Natur, und wir erheben nicht den Anspruch, dass auf der Grundlage unserer Ergebnisse in absehbarer Zeit eine neue Batterie-Generation entwickelt wird“, betont Krasheninnikov. „Aber vielleicht bringen unsere Resultate die Ingenieure ja auf neue, interessante Ideen.“

Ähnliches könnte für einen weiteres zweidimensionales Material gelten, das die Theoretiker in ihrer aktuellen Arbeit unter die Lupe nahmen – Molybdän-Disulfid (MoS2). Einerseits könnte es wie Graphen als künftiges Elektrodenmaterial für Akkus fungieren.

„Andererseits lässt es sich mit Stoffen wie Lithium oder Natrium dotieren“, erläutert Krasheninnikov. „Und dadurch könnte man daran denken, die elektronischen Eigenschaften von Molybdän-Disulfid maßzuschneidern, zum Beispiel um das Material zu einem Supraleiter zu machen.“

Publikationen:
I. Chepkasov, M. Ghorbani-Asl, Z. Popov, J. Smet, A.V. Krasheninnikov: Alkali metals inside bi-layer graphene and MoS2: Insights from first-principles calculations, in Nano Energy, 2020 (DOI: 10.1016/j.nanoen.2020.104927)

M. Kühne, F. Börrnert, S. Fecher, M. Ghorbani-Asl, J. Biskupek, D. Samuelis, A.V. Krasheninnikov, U. Kaiser, J. Smet: Reversible superdense ordering of lithium between two graphene sheets, in Nature, 2018 (DOI: 10.1038/s41586-018-0754-2)

Weitere Informationen:
Dr. Arkady Krasheninnikov
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260 3148 | E-Mail: a.krasheninnikov@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel.: +49 351 260-3400 | Mobil: +49 175 874 2865 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Bautzner Landstr. 400, 01328 Dresden | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat sechs Standorte (Dresden, Freiberg, Görlitz, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 170 Doktoranden.

Dr. Arkady Krasheninnikov
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260 3148 | E-Mail: a.krasheninnikov@hzdr.de

I. Chepkasov, M. Ghorbani-Asl, Z. Popov, J. Smet, A.V. Krasheninnikov: Alkali metals inside bi-layer graphene and MoS2: Insights from first-principles calculations, in Nano Energy, 2020 (DOI: 10.1016/j.nanoen.2020.104927)

M. Kühne, F. Börrnert, S. Fecher, M. Ghorbani-Asl, J. Biskupek, D. Samuelis, A.V. Krasheninnikov, U. Kaiser, J. Smet: Reversible superdense ordering of lithium between two graphene sheets, in Nature, 2018 (DOI: 10.1038/s41586-018-0754-2)

https://www.hzdr.de/presse/natrium_akku

Media Contact

Simon Schmitt Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer