Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Raum-Zeit-Fühler für das Licht-Materie-Wechselspiel

30.11.2017

Physiker des Labors für Attosekundenphysik der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben ein Attosekunden-schnelles Elektronen-„Mikroskop“ entwickelt. Mit seiner Hilfe lassen sich die Ausbreitung von Licht durch Raum und Zeit sowie die dadurch ausgelösten Bewegungen von Elektronen in Atomen sichtbar machen.

Das elementarste Wechselspiel in der Natur ist das zwischen Licht und Materie. Diese Interaktion geschieht rasend schnell, innerhalb von Attosekunden (Milliardstel einer milliardstel Sekunde). Was genau in diesen kurzen Zeiträumen passiert, blieb bisher meist im Verborgenen.


Mit extrem kurzen Blitzen aus Elektronen erhalten LAP-Forscher zeitaufgelöste Beugungsbilder von kristallinen Proben. Im Bild sind mehrere solche atomaren Beugungsbilder, die im Abstand von nur Attosekunden aufgenommen wurden, überlagert. So erhalten die Physiker Einblick in die Echtzeitbewegungen inneratomarer Phänomene. (Foto: Baum/Marimoto)

Jetzt hat ein Team um Dr. Peter Baum und Dr. Yuya Morimoto vom Labor für Attosekundenphysik (LAP) der Ludwig-Maximilians-Universität (LMU) und des Max-Planck-Instituts für Quantenoptik (MPQ) eine neue Mikroskop-Technik entwickelt, mit deren Hilfe die Interaktion zwischen Licht und Materie in Echtzeit beobachtet werden kann.

Um Attosekunden-schnelle Phänomene wie die Zyklen von Licht im Wechselspiel mit Atomen in der Natur sichtbar zu machen, benötigt man eine Technik, die ebenso schnell agiert wie die Prozesse selber und gleichzeitig atomare Auflösung erreicht. Um das zu erreichen, bedienen sich Baum und Morimoto dazu Elektronen, die als Elementarteilchen auch Welleneigenschaften haben.

Die Forscher lassen die Elektronen auf eine dielektrische Folie auftreffen. Dort werden sie über einen senkrecht dazu einfallenden Laserstrahl so moduliert, dass nach dem Durchgang durch die Folie eine Serie von Attosekunden-Impulsen entsteht. Das sind Pakete aus etwa 100 Einzelimpulsen, die jeweils rund 800 Attosekunden lang dauern.

Im Gegensatz zu optischen Attosekunden-Lichtblitzen haben die Elektronen-Pulszüge einen großen Vorteil für Anwendungen in der Mikroskopie: Sie haben eine viel kürzere Wellenlänge als konventionelle Lichtpulse. Damit werden auch Teilchen im Mikrokosmos sichtbar, die kleiner als Nanometer sind, zum Beispiel Atome. Zudem sind die Elektronenblitze zeitlich gesehen viel kürzer als die Schwingung von Licht. Dies erlaubt es, ultraschnell ablaufende Prozesse in der Natur sichtbar zu machen.

Mit der neu entwickelten Technik ist es nun möglich, neue Einblicke in den Mikrokosmos zu erhalten. In einem ersten Experiment haben die Forscher ihre Attosekunden-Pulszüge auf einen Kristall aus Silikon treffen lassen. Dabei konnten sie beobachten, wie Licht an dem Kristall gebrochen, abgelenkt und sich weiter in Raum und Zeit ausgebreitet hat.

Ebenso konnten die Forscher beobachten, wieviel Zeit vergeht, bis die Elektronen am Kristallgitter streuen. Man kann also direkt messen, wie die Elektronen in der Kristallprobe auf das Licht reagieren. Damit erreichen die LAP-Physiker subatomare Auflösung, sie können also in Zukunft die Geschehnisse in einem Atom in Echtzeit beobachten.

Mit ihrer Attosekunden-Elektronenmikroskopie haben die LAP-Physiker eine Grundlage geschaffen, selbst kleinste und schnellste elektromagnetische Felder des Lichts und ihre Wechselwirkung mit der Umgebung zu erkunden. Verbessern wollen die LAP-Physiker die Technologie nun, indem sie einzelne Attosekunden-Elektronenblitze produzieren, um noch präziser das Geschehen im Mikrokosmos zu verfolgen. Die neue Technik könnte nun zum Beispiel für die Entwicklung von Metamaterialien dienen.

Metamaterialien sind künstliche Nanostrukturen, deren Durchlässigkeit für elektrische und magnetische Felder von der in der Natur üblichen abweicht, so dass optische Phänomene entstehen, die sich mit herkömmlichen Stoffen nicht realisieren lassen. Metamaterialien eröffnen neuartige Perspektiven in der Optik und Optoelektronik, und könnten zu Bausteinen für lichtgetriebene Schaltkreise und Rechner der Zukunft werden. Thorsten Naeser

Bildbeschreibung:
Mit extrem kurzen Blitzen aus Elektronen erhalten LAP-Forscher zeitaufgelöste Beugungsbilder von kristallinen Proben. Im Bild sind mehrere solche atomaren Beugungsbilder, die im Abstand von nur Attosekunden aufgenommen wurden, überlagert. So erhalten die Physiker Einblick in die Echtzeitbewegungen inneratomarer Phänomene. (Foto: Baum/Marimoto)

Originalveröffentlichung:
Yuya Morimoto und Peter Baum
Diffraction and microscopy with attosecond electron pulse trains
Nature physics, 27. November 2017; doi: 10.1038/s41567-017-0007-6

Kontakt:

Dr. Peter Baum
Ludwig-Maximilians-Universität München
Am Coulombwall 1
85748 Garching b. München
Telefon: +49 (0)89 289 05 -14102
E-Mail: peter.baum@lmu.de

www.ultrafast-electron-imaging.de 

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lichtpulse bewegen Spins von Atom zu Atom
17.02.2020 | Forschungsverbund Berlin e.V.

nachricht Physik des Lebens - Die Logistik des Molekül-Puzzles
17.02.2020 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics