Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neuer Blick auf „seltsame Metalle“

17.01.2020

Seit Jahren wurde an der TU Wien ein neues Syntheseverfahren entwickelt, um den Geheimnissen der „seltsamen Metalle“ auf die Spur zu kommen. Nun gelang der Durchbruch. Die Ergebnisse wurden in „Science“ publiziert.

Supraleiter können elektrischen Strom völlig ohne Widerstand leiten – allerdings nur unterhalb einer bestimmten „Sprungtemperatur“. Viele Materialien müssen dafür bis fast an den absoluten Temperatur-Nullpunkt abgekühlt werden, manche Materialien hingegen bleiben bis hin zu viel höheren Temperaturen supraleitend.


Prof. Silke Bühler-Paschen im Labor an der TU Wien

Luiza Puiu / TU Wien

Wie diese „Hochtemperatur-Supraleitung“ funktioniert und wie man Materialien entwickeln kann, die vielleicht auch bei normaler Raumtemperatur noch supraleitend bleiben, ist bis heute eines der großen Rätsel der modernen Physik.

Ein Schlüssel zum Erfolg könnte die Untersuchung von „seltsamen Metallen“ sein. Das sind spezielle Materialien, deren elektrischer Widerstand ein sehr ungewöhnliches Temperaturverhalten zeigt.

Dieses Phänomen ist eng mit Supraleitung verwandt: Viele Klassen von Hochtemperatursupraleitern zeigen dieses „seltsame Metall“-Verhalten. Bei der Forschung an diesen Materialien gelang nun ein wichtiger Durchbruch:

Ein Forschungsteam der TU Wien und der Rice University (Houston, Texas) entwickelte ein neues Verfahren, mit dem extrem dünne Schichten aus solchen Materialien hergestellt werden können, um sie dann zu durchleuchten.

So kann man wichtige Daten über diese Materialien ermitteln, die sich sonst nicht messen lassen, und neue Theorien der Hochtemperatur-Supraleitung entwickeln. Die Ergebnisse wurde nun im Fachjournal „Science“ publiziert.

Seltsame Metalle als Schlüssel zur Supraleitung

„Schon 1987 wurde der Physik-Nobelpreis für die Entdeckung der Hochtemperatur-Supraleitung vergeben, aber auch heute noch ist unser Verständnis dieses Phänomens unzureichend“, sagt Prof. Silke Bühler-Paschen vom Institut für Festkörperphysik der TU Wien. „Allerdings wissen wir, dass seltsame Metalle eng mit dieser technologisch so wichtigen Art von Supraleitung in Verbindung stehen.“

Sie zeigen oberhalb der Sprungtemperatur einen Zusammenhang zwischen Temperatur und Widerstand, der völlig anders aussieht als bei gewöhnlichen Metallen. „Im Gegensatz zu einfachen Metallen wie Kupfer oder Gold scheint der elektrische Widerstand in seltsamen Metallen nicht durch die thermische Bewegung der Atome bedingt zu sein, sondern durch bestimmte Quantenfluktuationen“, erklärt Bühler-Paschen.

Um diese Vermutung zu bestätigen und die Natur der Quantenfluktuationen zu ergründen, muss nicht nur die Temperaturabhängigkeit des Widerstandes untersucht werden, sondern auch seine Frequenzabhängigkeit. Das gelingt am besten, indem man das Material mit Licht im passenden Frequenzbereich bestrahlt.

Für die Untersuchungen wurde ein Material aus Ytterbium, Rhodium und Silizium (YbRh2Si2) ausgewählt, das für sein besonders ausgeprägtes „seltsames Metall“-Verhalten bekannt ist. Um dieses Material zu untersuchen, benötigt man Strahlung im Terahertz-Bereich.

„An diesem Punkt wird die Sache allerdings technologisch anspruchsvoll“, sagt Silke Bühler-Paschen. „Hochgenaue Messungen sind nämlich nur in Transmission möglich, also wenn das Material vom Terahertz-Strahl durchdrungen wird.“

Während elektrisch isolierende Materialien Terahertz-Strahlen meist fast ungehindert durchlassen, wird diese Art von Strahlung von Metallen normalerweise sehr stark reflektiert oder absorbiert. Nur wenn man eine extrem dünne Schicht des Materials zur Verfügung hat, kann ausreichend viel Terahertz-Strahlung hindurchgelangen, um eine präzise Messung zu ermöglichen.

Spezielles Herstellungsverfahren entwickelt

In den Reinraumlabors der TU Wien entwickelte man ein eigenes, aufwändiges Molekularepitaxie-Verfahren, um dünne Schichten dieses Materials herzustellen: „Ytterbium, Rhodium und Silizium werden genau dosiert verdampft und treffen, quasi Atom für Atom, auf einem Substrat auf“, sagt Maxwell Andrews (Institut für Festkörperelektronik, TU Wien).

„Sind alle Parameter richtig eingestellt, wächst YbRh2Si2 Atomschicht für Atomschicht. Indem man die Dauer des Wachstumsprozesses richtig wählt, erreicht man genau die gewünschte Schichtdicke.“

„Entscheidend war, dass wir ein perfekt passendes Substrat gefunden haben, auf dem man diese Schichten aufbringen kann – nämlich Germanium.“, sagt Lukas Prochaska, einer der drei federführenden Doktoranden des Teams. „Die Kristallstruktur von Germanium passt geometrisch ganz ausgezeichnet zur Anordnung der Ytterbium-Atome in unserem seltsamen Metall. Nur dadurch ergeben sich Filme von hervorragender Qualität.“

Die Bewegung von Ladungsträgern genau verstehen

Doktorand Xinwei Li von der Rice University führte dann hochgenaue Tetahertz-Messungen an den dünnen YbRh2Si2-Filmen durch. Die Analyse der Daten, an der auch Rice-Theoretiker Qimiao Si maßgeblich beteiligt war, ergab entscheidende neue Hinweise: „Unsere Vermutung, dass quantenkritische Ladungsfluktuationen eine entscheidende Rolle spielen, wurde dadurch nun bestätigt“, sagt Silke Bühler-Paschen.

„Für uns schließt sich hier ein Kreis: Schon 2004 konnten wir zeigen, dass das „seltsame Metall“-Verhalten in diesem Material mit einer sprunghaften Änderung der Ladungsträgerkonzentration einhergeht. Damals hatten Qimiao Si und ich bereits die Notwendigkeit von dynamischen Messungen erkannt, aber die technischen Grundlagen für eine experimentelle Realisierung fehlten. Nun konnten wir diesen Prozess endlich genauer analysieren und verstehen.“

Durch diese Ergebnisse ergeben sich nun neue Ideen, diese ungewöhnlichen Materialeffekte zu beschreiben. „Diese Ideen lassen sich dann auch auf andere Klassen von Hochtemperatur-Supraleitern übertragen“, erklärt Bühler-Paschen. „Wir hoffen, dass dadurch eine neue, bessere Theorie der Hochtemperatur-Supraleitung entstehen kann, damit es möglich wird, bessere Supraleiter mit noch deutlich höherer Sprungtemperatur zu entwickeln – das wäre ein gewaltiger technologischer Erfolg.“

Wissenschaftliche Ansprechpartner:

Prof. Silke Bühler-Paschen
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13716
silke.buehler-paschen@tuwien.ac.at

Originalpublikation:

Singular charge fluctuations at a magnetic quantum critical point, Prochaska et al., Science 367, 6475, pp. 285-288, DOI: 10.1126/science.aag1595

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt
03.07.2020 | Universität Wien

nachricht Physiker blicken mit Pikoskope in das Innere der atomaren Materie
01.07.2020 | Universität Rostock

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics