Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Gespür für Infrarotlicht

19.01.2016

Laserphysiker am Max-Planck-Institut für Quantenoptik haben ein Messsystem für Lichtwellen im Nahen Infrarotbereich entwickelt.

Wer den Mikrokosmos erforschen möchte, der benötigt eine exakte Kontrolle über Laserlicht. Erst mit seiner Hilfe ist es möglich, Elektronenbewegungen zu erkunden und ihr Verhalten zu beeinflussen. Jetzt haben Physiker vom Labor für Attosekundenphysik am Max-Planck-Institut für Quantenoptik (MPQ) und der Ludwig-Maximilians Universität München (LMU) ein Messsystem entwickelt, mit dem sie Laserpulse mit großer Bandbreite im Infrarotspektrum des Lichts exakt bestimmen können.


Über einen Lithiumniobat-Kristall erzeugen die Laserphysiker einen nur wenige Femtosekunden langen Infrarotpuls. Die Wellenform des Infrarotlichts können die Forscher genau analysieren.

Foto: Thorsten Naeser

Im Infrarot-Wellenlängenbereich bis zu 1200 Nanometern war dies bis jetzt nur mit aufwendigen Vakuumsystemen möglich. Das neue System kann für die präzise Erzeugung von Attosekunden-langen Lichtblitzen zur Erforschung von Elektronenbewegungen eingesetzt werden, genauso wie zur kontrollierten Mobilisation von Elektronen in Kristallen.

Licht ist ein nur schwer zu fassendes Medium. Mit knapp 300.000 Kilometern pro Sekunde ist es nicht nur sehr schnell, auch sein elektromagnetisches Feld hat es in sich: Es schwingt rund eine Million Milliarden Mal pro Sekunde. In den letzten Jahren gelingt es dennoch immer besser, diese Schwingungen exakt zu bestimmen und sie sogar zu beeinflussen. Damit wird Licht zu einem ultraschnellen Werkzeug zur Erkundung des Mikrokosmos.

Infrarote Laserpulse mit wenigen Femtosekunden Dauer, dienen in diesem Zusammenhang einerseits dazu, eine verlässliche Lichtquelle für die Erzeugung von Attosekunden-Lichtblitzen zu schaffen. Mit Attosekunden-langen Lichtblitzen ist man in der Lage Elektronen zu „fotografieren“.

Zum anderen kann man mit Infrarot-Laserpulsen Elektronenbewegungen in Molekülen und Kristallen anregen und damit ihre elektronischen Eigenschaften innerhalb von Femtosekunden verändern. Eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde, eine Attosekunde ist noch tausend Mal kürzer.

Je besser man die Beschaffenheit der Infrarot-Laserpulse kennt, desto genauer können Experimente durchgeführt werden, die Aufschluss über Phänomene im Inneren von Kristallen geben. Jetzt haben Laserphysiker vom Labor für Attosekundenphysik um Dr. Nicholas Karpowicz und Sabine Keiber am Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians Universität München ein Messsystem entwickelt, mit dem man den genauen Schwingungsverlauf von Lichtwellen im infraroten Bereich des Spektrums, bis zu 1200 Nanometer Wellenlänge, analysieren kann.

In diesem Messsystem tastet ein weiterer, fünf Femtosekunden-langer Laserpuls das elektromagnetische Feld des Infrarotpulses ab. „Ein Femtosekunden-langer Infrarot-Laserpuls besteht aus synchronisierten Wellenschwingungen des Lichts und damit des elektromagnetischen Feldes“, erklärt Nicholas Karpowicz.

„Mit unserer Technik sind wir nun in der Lage nicht nur das elektromagnetische Feld des Lichtpulses in seiner Gesamtheit zu bestimmen, sondern auch das Feld jeder einzelnen Schwingung innerhalb des Pulses zu analysieren.“ In dem Wellenlängenbereich bis zu 1200 Nanometer war eine so exakte Analyse bis heute nur unter sehr aufwendigen Bedingungen möglich.

Mit der neu erworbenen Kontrolle über die nahen Infrarotpulse erweitern sich nun die Möglichkeiten zur Erkundung des Mikrokosmos. Ebenso haben die Forscher mit ihrer Analysemethode eine Möglichkeit geschaffen, die technologische Weiterentwicklung im Bereich der Datenübertragung mit Licht zu unterstützen.

Da für die Übertragung von Informationen häufig eine Lichtwellenlänge von rund 1500 Nanometern benutzt wird, bietet sich nun die Chance diese durch exakte Messtechnik noch effizienter zu gestalten. Und auch in der Grundlagenforschung kann das System eingesetzt werden. Das Messsystem kann die zeitaufgelöste Infrarotspektroskopie zur Untersuchung von biologischen und chemischen Proben verbessern. Thorsten Naeser

Originalveröffentlichung:

Sabine Keiber, Shawn Sederberg, Alexander Schwarz, Michael Trubetskov, Volodymyr Pervak, Ferenc Krausz and Nicholas Karpowicz
Electro-optic sampling of near-infrared waveforms
Nature Photonics, 18. Januar 2016, doi: 10.1038/NHPHOTON.2015.269

Kontakt:

Dr. Nicholas Karpowicz
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 689
E-Mail: nicholas.karpowicz@mpq.mpg.de

Sabine Keiber
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 658
E-Mail: sabine.keiber@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Graphen auf dem Weg zur Supraleitung
12.11.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Datensicherheit: Aufbruch in die Quantentechnologie
09.11.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

MagicMoney: Offline bezahlen – mit deinem Smartphone

13.11.2018 | Wirtschaft Finanzen

5G sichert Zukunft von Industrie 4.0 – DFKI mit der SmartFactoryKL auf der SPS IPC Drives

13.11.2018 | Messenachrichten

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics