Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Elektronenkäfig aus Schallwellen

14.11.2017

Internationales Wissenschaftlerteam entwickelt neues Konzept, Elektronen mit Hilfe von Schallwellen einzufangen zu manipulieren.

Ausschlaggebend für die Eigenschaften moderner, technologisch relevanter Materialien ist das korrelierte Verhalten der Elektronen in ihrem Innern. Ein besseres Verständnis davon ist nur möglich, wenn es gelingt, diese Teilchen kontrolliert einzufangen, entweder einzeln und isoliert, oder als Vielteilchensystem in einer Festkörperumgebung.


In einem piezoelektrischen Material (PE) erzeugen stehende Oberflächen-Schallwellen ein zeitabhängiges elektrisches Potential, das auf die in einer dünnen Schicht gefangenen Elektronen, d.h. ein zweidimensionales Elektronengas (DEG), wirkt. Je nach Geometrie des Aufbaus sind die resultierenden akustischen Gitter ein- oder zweidimensional. Bei hohen Schallwellenfrequenzen kann das effektive Potential als zeitunabhängiges Pseudogitter betrachtet werden. Die Bewegung eines Elektrons in einem Potentialminimum entspricht den Schwingungen eines harmonischen Oszillators, die überlagert werden durch hochfrequente „Mikroschwingungen“ sehr kleiner Amplitude.

(Grafik: Originalveröffentlichung)

Wegen ihrer – im Vergleich zu Atomen – extrem kleinen Masse sind die punktförmigen Teilchen aber sehr flink und wendig und lassen sich deshalb nur schwer an einem Ort festhalten. Nun hat ein internationales Wissenschaftlerteam um Prof. Ignacio Cirac (Max-Planck-Institut für Quantenoptik, Garching), und Prof. Mikhail Lukin (Harvard Universität, USA) eine neue Methode ausgearbeitet, eine Art „Käfig“ für Elektronen zu bauen (Physical Review X 7, 24. Oktober 2017).

Danach erzeugen Schallwellen auf piezoelektrischen Oberflächen elektrische Potentiale, mit deren Hilfe Elektronen verschoben oder auch eingefangen werden können. Mit stehenden Schallwellen lassen sich darüber hinaus Gitterstrukturen ähnlich denen von optischen Gittern für neutrale Atome erzeugen.

Zum einen liefert die Arbeit einen allgemeinen theoretischen Rahmen sowie Richtlinien für eine experimentelle Realisierung des Konzepts. Zum andern untersuchen die Wissenschaftler im Detail die Eignung bestimmter, aus Schichten aufgebauter Halbleiterstrukturen als experimentelle Plattform. Der vorgeschlagene Aufbau ist von fundamentalem Interesse für die kontrollierte Untersuchung von in Festkörpersystemen auftretenden Quasiteilchen.

Er stellt aber auch eine neue Möglichkeit für die Quantensimulation von Festkörper-Vielteilchensystemen dar mit der Aussicht, in bislang unbekannte Parameterbereiche vorzustoßen, dank der extrem kleinen Teilchenmassen, der systemeigenen Elektron-Phonon-Kühlung und den starken Wechselwirkungen zwischen den Teilchen.

Basiselement in diesem Konzept ist eine aus verschiedenen Schichten gebildete Festkörperstruktur: auf einem Substrat ist zunächst ein dünner, praktisch zweidimensionaler Film aus einem halbleitenden Material, z.B. Galliumarsenid, aufgetragen. Darauf befindet sich eine Schicht aus einem piezoelektrischen Material, auf dessen Oberfläche zwei „Interdigital Transducer“ (IDT) aufgeprägt sind.

Die aus jeweils zwei dünnen Filmelektroden bestehenden IDTs erzeugen entgegen gesetzt laufende Oberflächenwellen. Diese „surface acoustic waves“ (SAWs) rufen ein zeitabhängiges periodisches elektrisches Potential hervor, das wiederum auf die in dem dünnen Halbleiterfilm gefangenen Elektronen wirkt. Die Tiefe und der Gitterabstand des Potentials werden durch die an den IDTs angelegte Spannung gesteuert.

SAWs wurden bereits erfolgreich eingesetzt, um die Position einzelner Elektronen zu verändern, oder um Elektronen die wenigen Nanosekunden lang festzuhalten, während der sich die Schallwellen auf der Oberfläche ausbreiten. Der neue Ansatz schlägt jedoch ein „quasi-stationäres“ Fallenpotential vor. „Wenn die Frequenz der Schallwellen hoch genug ist, können die Elektronen der schnell oszillierenden Kraft nicht mehr folgen“, erklärt Johannes Knörzer, Doktorand in der Abteilung Theorie von Prof. Cirac am MPQ. „Die Potentiallandschaft kann dann als ein effektiv zeitunabhängiges Pseudogitter beschrieben werden, das die Elektronen in der Nähe eines lokalen Minimums festhält.“

Ein Schwerpunkt der Arbeit ist die detaillierte Beschreibung der Bedingungen, unter denen einzelne Teilchen in von Schallwellen erzeugten elektrischen Potentialen dynamisch eingefangen und gekühlt werden können. „Die Rechnungen implizieren z.B., dass sehr tiefe Temperaturen erforderlich sind. In gewisser Weise erinnert die theoretische Behandlung des Systems an die von Ionen-Fallen“, erläutert Johannes Knörzer. Der andere Schwerpunkt ist die Simulation von Quanten-Vielteilchensystemen durch ein System aus Elektronen in einem akustischen Gitter. „Die Dynamik von Elektronen in einem akustischen Gitter hat große Ähnlichkeit mit dem Verhalten von fermionischen ultrakalten Atomen in optischen Gittern; beides wird vom Fermi-Hubbard Modell erfasst“, fügt Knörzer hinzu.

Das Team analysiert die Machbarkeit des Konzepts für unterschiedliche Heterostrukturen, in denen sich hochfrequente Schallwellen schnell ausbreiten können. Die Überlegungen gelten nicht nur für Elektronen, sondern auch für sogenannte Quasiteilchen wie Exzitonen oder Löcher, die in modernen Materialien auftreten. „Wir haben den starken Wunsch, ein tieferes Verständnis von den Eigenschaften und Wechselwirkungen dieser Teilchen zu gewinnen. Das ist unsere Motivation, einen Kontrollmechanismus zu finden, der die Allgemeinheit und Flexibilität der optischen Gitter auf Festkörpersysteme überträgt“, resümiert Prof. Ignacio Cirac. „Unser höchstes Ziel ist es, das Verhalten korrelierter Elektronen in technologisch relevanten Materialien und Molekülen zu verstehen. Das würde den Weg ebnen, einen universellen Quantensimulator zu bauen.“ Olivia Meyer-Streng

Beschreibung der Grafik:
In einem piezoelektrischen Material (PE) erzeugen stehende Oberflächen-Schallwellen ein zeitabhängiges elektrisches Potential, das auf die in einer dünnen Schicht gefangenen Elektronen, d.h. ein zweidimensionales Elektronengas (DEG), wirkt. Je nach Geometrie des Aufbaus sind die resultierenden akustischen Gitter ein- oder zweidimensional. Bei hohen Schallwellenfrequenzen kann das effektive Potential als zeitunabhängiges Pseudogitter betrachtet werden. Die Bewegung eines Elektrons in einem Potentialminimum entspricht den Schwingungen eines harmonischen Oszillators, die überlagert werden durch hochfrequente „Mikroschwingungen“ sehr kleiner Amplitude.
(Grafik: Originalveröffentlichung)

Originalveröffentlichung:
Original publication:
M. J. A. Schuetz, J. Knörzer, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. Ignacio Cirac
Acoustic Traps and Lattices for Electrons in Semiconductors
Physical Review X 7, 041019 (2017), DOI: 10.1103/PhysRevX.7.041019

Kontakt:

Prof. Dr. J. Ignacio Cirac
Honorarprofessor TU München und
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 705
E-Mail: ignacio.cirac@mpq.mpg.de

Johannes Knörzer
Doktorand, Abteilung Theorie
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 315
E-Mail: johannes.knoerzer@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@.mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Emulsionen masschneidern

15.11.2018 | Materialwissenschaften

LTE-V2X-Direktkommunikation für mehr Verkehrssicherheit

15.11.2018 | Informationstechnologie

Daten „fühlen“ mit haptischen Displays

15.11.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics