Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Elektronenkäfig aus Schallwellen

14.11.2017

Internationales Wissenschaftlerteam entwickelt neues Konzept, Elektronen mit Hilfe von Schallwellen einzufangen zu manipulieren.

Ausschlaggebend für die Eigenschaften moderner, technologisch relevanter Materialien ist das korrelierte Verhalten der Elektronen in ihrem Innern. Ein besseres Verständnis davon ist nur möglich, wenn es gelingt, diese Teilchen kontrolliert einzufangen, entweder einzeln und isoliert, oder als Vielteilchensystem in einer Festkörperumgebung.


In einem piezoelektrischen Material (PE) erzeugen stehende Oberflächen-Schallwellen ein zeitabhängiges elektrisches Potential, das auf die in einer dünnen Schicht gefangenen Elektronen, d.h. ein zweidimensionales Elektronengas (DEG), wirkt. Je nach Geometrie des Aufbaus sind die resultierenden akustischen Gitter ein- oder zweidimensional. Bei hohen Schallwellenfrequenzen kann das effektive Potential als zeitunabhängiges Pseudogitter betrachtet werden. Die Bewegung eines Elektrons in einem Potentialminimum entspricht den Schwingungen eines harmonischen Oszillators, die überlagert werden durch hochfrequente „Mikroschwingungen“ sehr kleiner Amplitude.

(Grafik: Originalveröffentlichung)

Wegen ihrer – im Vergleich zu Atomen – extrem kleinen Masse sind die punktförmigen Teilchen aber sehr flink und wendig und lassen sich deshalb nur schwer an einem Ort festhalten. Nun hat ein internationales Wissenschaftlerteam um Prof. Ignacio Cirac (Max-Planck-Institut für Quantenoptik, Garching), und Prof. Mikhail Lukin (Harvard Universität, USA) eine neue Methode ausgearbeitet, eine Art „Käfig“ für Elektronen zu bauen (Physical Review X 7, 24. Oktober 2017).

Danach erzeugen Schallwellen auf piezoelektrischen Oberflächen elektrische Potentiale, mit deren Hilfe Elektronen verschoben oder auch eingefangen werden können. Mit stehenden Schallwellen lassen sich darüber hinaus Gitterstrukturen ähnlich denen von optischen Gittern für neutrale Atome erzeugen.

Zum einen liefert die Arbeit einen allgemeinen theoretischen Rahmen sowie Richtlinien für eine experimentelle Realisierung des Konzepts. Zum andern untersuchen die Wissenschaftler im Detail die Eignung bestimmter, aus Schichten aufgebauter Halbleiterstrukturen als experimentelle Plattform. Der vorgeschlagene Aufbau ist von fundamentalem Interesse für die kontrollierte Untersuchung von in Festkörpersystemen auftretenden Quasiteilchen.

Er stellt aber auch eine neue Möglichkeit für die Quantensimulation von Festkörper-Vielteilchensystemen dar mit der Aussicht, in bislang unbekannte Parameterbereiche vorzustoßen, dank der extrem kleinen Teilchenmassen, der systemeigenen Elektron-Phonon-Kühlung und den starken Wechselwirkungen zwischen den Teilchen.

Basiselement in diesem Konzept ist eine aus verschiedenen Schichten gebildete Festkörperstruktur: auf einem Substrat ist zunächst ein dünner, praktisch zweidimensionaler Film aus einem halbleitenden Material, z.B. Galliumarsenid, aufgetragen. Darauf befindet sich eine Schicht aus einem piezoelektrischen Material, auf dessen Oberfläche zwei „Interdigital Transducer“ (IDT) aufgeprägt sind.

Die aus jeweils zwei dünnen Filmelektroden bestehenden IDTs erzeugen entgegen gesetzt laufende Oberflächenwellen. Diese „surface acoustic waves“ (SAWs) rufen ein zeitabhängiges periodisches elektrisches Potential hervor, das wiederum auf die in dem dünnen Halbleiterfilm gefangenen Elektronen wirkt. Die Tiefe und der Gitterabstand des Potentials werden durch die an den IDTs angelegte Spannung gesteuert.

SAWs wurden bereits erfolgreich eingesetzt, um die Position einzelner Elektronen zu verändern, oder um Elektronen die wenigen Nanosekunden lang festzuhalten, während der sich die Schallwellen auf der Oberfläche ausbreiten. Der neue Ansatz schlägt jedoch ein „quasi-stationäres“ Fallenpotential vor. „Wenn die Frequenz der Schallwellen hoch genug ist, können die Elektronen der schnell oszillierenden Kraft nicht mehr folgen“, erklärt Johannes Knörzer, Doktorand in der Abteilung Theorie von Prof. Cirac am MPQ. „Die Potentiallandschaft kann dann als ein effektiv zeitunabhängiges Pseudogitter beschrieben werden, das die Elektronen in der Nähe eines lokalen Minimums festhält.“

Ein Schwerpunkt der Arbeit ist die detaillierte Beschreibung der Bedingungen, unter denen einzelne Teilchen in von Schallwellen erzeugten elektrischen Potentialen dynamisch eingefangen und gekühlt werden können. „Die Rechnungen implizieren z.B., dass sehr tiefe Temperaturen erforderlich sind. In gewisser Weise erinnert die theoretische Behandlung des Systems an die von Ionen-Fallen“, erläutert Johannes Knörzer. Der andere Schwerpunkt ist die Simulation von Quanten-Vielteilchensystemen durch ein System aus Elektronen in einem akustischen Gitter. „Die Dynamik von Elektronen in einem akustischen Gitter hat große Ähnlichkeit mit dem Verhalten von fermionischen ultrakalten Atomen in optischen Gittern; beides wird vom Fermi-Hubbard Modell erfasst“, fügt Knörzer hinzu.

Das Team analysiert die Machbarkeit des Konzepts für unterschiedliche Heterostrukturen, in denen sich hochfrequente Schallwellen schnell ausbreiten können. Die Überlegungen gelten nicht nur für Elektronen, sondern auch für sogenannte Quasiteilchen wie Exzitonen oder Löcher, die in modernen Materialien auftreten. „Wir haben den starken Wunsch, ein tieferes Verständnis von den Eigenschaften und Wechselwirkungen dieser Teilchen zu gewinnen. Das ist unsere Motivation, einen Kontrollmechanismus zu finden, der die Allgemeinheit und Flexibilität der optischen Gitter auf Festkörpersysteme überträgt“, resümiert Prof. Ignacio Cirac. „Unser höchstes Ziel ist es, das Verhalten korrelierter Elektronen in technologisch relevanten Materialien und Molekülen zu verstehen. Das würde den Weg ebnen, einen universellen Quantensimulator zu bauen.“ Olivia Meyer-Streng

Beschreibung der Grafik:
In einem piezoelektrischen Material (PE) erzeugen stehende Oberflächen-Schallwellen ein zeitabhängiges elektrisches Potential, das auf die in einer dünnen Schicht gefangenen Elektronen, d.h. ein zweidimensionales Elektronengas (DEG), wirkt. Je nach Geometrie des Aufbaus sind die resultierenden akustischen Gitter ein- oder zweidimensional. Bei hohen Schallwellenfrequenzen kann das effektive Potential als zeitunabhängiges Pseudogitter betrachtet werden. Die Bewegung eines Elektrons in einem Potentialminimum entspricht den Schwingungen eines harmonischen Oszillators, die überlagert werden durch hochfrequente „Mikroschwingungen“ sehr kleiner Amplitude.
(Grafik: Originalveröffentlichung)

Originalveröffentlichung:
Original publication:
M. J. A. Schuetz, J. Knörzer, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. Ignacio Cirac
Acoustic Traps and Lattices for Electrons in Semiconductors
Physical Review X 7, 041019 (2017), DOI: 10.1103/PhysRevX.7.041019

Kontakt:

Prof. Dr. J. Ignacio Cirac
Honorarprofessor TU München und
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 705
E-Mail: ignacio.cirac@mpq.mpg.de

Johannes Knörzer
Doktorand, Abteilung Theorie
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 315
E-Mail: johannes.knoerzer@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@.mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics