Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein atomares Quantenbit schaltbar gemacht

17.04.2018

Ein Bit pro Atom: Augsburger Physiker erreichen gemeinsam mit US-amerikanischen Kollegen das wohl ultimative Limit für einen nanoskaligen Datenspeicher

Die zunehmende Miniaturisierung von elektronischen Schaltkreisen und Speichermedien schreitet immer weiter voran. Aber wie klein kann man ein ‚Bit‘ an Information eigentlich machen? Genügt ein einziges Atom, um eine 0 und oder eine 1 zu schreiben und den jeweiligen Zustand einzufrieren?


Das Quantentunneln der Magnetisierung erlaubt ein gezieltes Einfrieren oder Umklappen eines magnetischen Momentes, je nachdem entlang welcher Richtung ein externes Magnetfeld angelegt wird.

© Universität Augsburg/IfP/EKM

Das magnetische Moment von einzelnen Atomen oder auch von kleinen Clustern erlaubt dies tatsächlich. Es wirkt wie ein winziger Stabmagnet, dem man nur zwei mögliche Orientierungen erlaubt: Entweder zeigt der magnetische Nordpol nach oben oder nach unten. Zwischen beiden Zuständen liegt eine hohe Energiebarriere, die ein einfaches Umschalten verhindert und mittendrin liegende Orientierungen verbietet.

Nun erlaubt die Quantenmechanik aber eine Abkürzung: Anstatt die Energiebarriere mühsam zu erklimmen, kann man sie einfach durchtunneln. Dabei gilt es allerdings einiges zu beachten: So müssen die Energien der zwei Zustände, zwischen denen ein solcher Tunnelprozess stattfindet, exakt gleich sein, was auch als Entartung bezeichnet wird. Mit einem von außen angelegten Magnetfeld kann diese aufgehoben werden, was zu einer Blockade des Tunnelpfades führt. Die Orientierung des magnetischen Momentes wird dabei eingefroren.

Statt eines nur 0,003 Tesla

Dass dies schon mit sehr kleinen Magnetfeldern gelingen kann, zeigen Ergebnisse der Nachwuchsgruppe um den Augsburger Physiker Dr. Anton Jesche (Lehrstuhl für Experimentalphysik VI/EKM), die jetzt in einem Artikel in der Fachzeitschrift Physical Review Letter erschienen sind. Gemeinsam mit Kollegen der Universität Central Florida und des Ames National Laboratory wurde das Quantentunneln der Magnetisierung einzelner Eisenatome untersucht, die in eine kristalline Matrix aus Lithiumnitrid eingebracht wurden.

Dass sich das Quantentunneln in Magnetfeldern schwächen lässt, ist schon länger bekannt und wurde intensiv an sogenannten Molekularmagneten untersucht. Hierbei musste jedoch ein sehr starkes Magnetfeld im Bereich von einem Tesla erzeugt werden, um einen merklichen Effekt auf die Schaltbarkeit des magnetischen Bits zu haben.

Dagegen reicht weniger als ein halbes Prozent dieses Wertes, um den Tunneleffekt im neu entwickelten Eisensystem vollständig zu unterdrücken. „Schon mit einer einfachen Spule, die man um den kleinen Finger wickeln kann, lässt sich ein Feld dieser Größe erzeugen“, berichtet Jesche, „vor allem aber kann es nahezu instantan, also ohne die geringste zeitliche Verzögerung, an- oder ausgeschalten werden.“

Dieses außergewöhnliche Verhalten basiert zum einen auf der geringen Defektdichte der in Augsburg gezüchteten Kristalle. Zum anderen spielt die chemische Umgebung eine entscheidende Rolle: Die Eisenatome werden von lediglich zwei nächsten Nachbarn an ihrem Platz gehalten. Hierdurch wird eine hohe Anisotropie, d. h. eine hohe Richtungsabhängigkeit der Atomeigenschaften erzeugt, die ein zufälliges Umklappen der magnetischen Momente verhindert.

Das magnetische Moment einfrieren oder aber gezielt umklappen

Doch nicht nur das Unterdrücken des quantenmechanischen Tunneleffektes ist gelungen, auch das Gegenteil hat sich möglich erwiesen: Legt man des externe Magnetfeld entlang bestimmter Richtungen an, nämlich senkrecht zur gedachten Linie zwischen Eisen und seinen zwei Nachbaratomen, so kann die Tunnelrate sogar signifikant erhöht werden. Man kann das magnetische Moment somit entweder einfrieren oder sein Umklappen gezielt befördern.

Technisch leicht realisierbare 10 Kelvin über dem absoluten Nullpunkt

Mit einem Bit pro Atom scheint damit das ultimative Limit für einen nanoskaligen Datenspeicher erreicht. „Im Prinzip kann man mit diesen Zuständen auch mathematische Operationen durchführen“, so Jesche, „ wobei es zu einem möglichen Quantencomputer aber noch ein weiter Weg ist.“ Vielversprechend seien aber jedenfalls schon einmal die relativ hohen Temperaturen, bei denen sich der Übergang vom klassischen zu quantenmechanischen Verhalten ausbildet: 10 Kelvin über dem absoluten Nullpunkt lassen sich technisch recht leicht realisieren, sie liegen mehr als hundertmal höher als in aktuellen Rechnerarchitekturen, die auf supraleitenden Quantenbits basieren.


Publikation:
M. Fix, J. H. Atkinson, P. C. Canfield, E. del Barco, and A. Jesche: Extreme Field Sensitivity of Magnetic Tunneling in Fe-Doped Li₃N, Phys. Rev. Lett. 120, 147202 – Published 4 April 2018, http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.147202


Kontakt:
Dr. Anton Jesche
Lehrstuhl für Experimentalphysik VI
Universität Augsburg
86135 Augsburg
Telefon +49(0)821-598-3659
anton.jesche@physik.uni-augsburg.de
http://www.physik.uni-augsburg.de/de/exp6/EM/

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.147202

Klaus P. Prem | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Atkinson Atom Magnetic Quantenbit Quantenmechanik Tesla magnetische Moment

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenverschränkung erstmals mit Licht von Quasaren bestätigt
20.08.2018 | Österreichische Akademie der Wissenschaften

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenverschränkung erstmals mit Licht von Quasaren bestätigt

20.08.2018 | Physik Astronomie

1,6 Millionen Euro für den Aufbau einer Forschungsgruppe zu Quantentechnologien

20.08.2018 | Förderungen Preise

IHP-Technologie darf in den Weltraum fliegen

20.08.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics