Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Drei Magnetzustände pro Loch

03.02.2017

Magnetische Lochgitter im Nanometer-Maßstab könnten neue Wege für die Computertechnik eröffnen. So haben Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit internationalen Kollegen gezeigt, wie sich ein solches Gitter aus Metall bei Raumtemperatur zuverlässig programmieren lässt. Sie fanden zudem heraus, dass bei jedem Loch („Antidot“) drei magnetische Zustände einstellbar sind. Die Ergebnisse sind jetzt in der Fachzeitschrift „Scientific Reports“ erschienen.

Für die Programmierung der magnetischen Eigenschaften in einer dünnen Schicht aus dem Metall Kobalt entwarf der Physiker Dr. Rantej Bali vom HZDR zusammen mit Wissenschaftlern aus Singapur und Australien eine spezielle Gitterstruktur. Diese stellten seine Kollegen von der National University in Singapur in einem photolithographischen Prozess her, wie er auch in heutigen Chipfabriken benutzt wird.


Die spezielle Anordnung von vier Löchern in einer Schicht aus Kobalt erlaubt bereits 15 unterschiedliche Typen von Zahlenkombinationen für die Programmierung, wie Forscher am HZDR berechnet haben.

HZDR

Im Ergebnis entstanden jeweils etwa 250 Nanometer (Millionstel Millimeter) große Löcher, sogenannte Antidots, die sich in regelmäßigen Abständen – mit jeweils 150 Nanometer breiten Zwischenräumen – in der Schicht anordneten. Dabei achteten die Spezialisten aus Singapur gemäß den Entwürfen aus Dresden darauf, dass das Metall-Netz ungefähr 50 Nanometer dünn ist, damit es stabil programmierbar wird.

In diesen besonderen Abmessungen zeigte das Antidot-Gitter aus Kobalt interessante Eigenschaften: Das Team um Dr. Bali fand heraus, dass sich mit Hilfe eines von außen angelegten, magnetischen Feldes drei verschiedene magnetische Zustände um jedes Loch herum einstellen lassen. Die Wissenschaftler nennen diese Zustände „G“, „C“ und „Q“. „Die Antidots sind jetzt weltweit sehr populär in der Forschergemeinde.

Durch die Optimierung der Antidot-Geometrie konnten wir zeigen, dass sich die Spins, also die magnetischen Momente der Elektronen, rund um die Löcher zuverlässig programmieren lassen“, so Dr. Bali. „Unterstützung haben wir dabei auch von meinen ehemaligen Kollegen der University of Western Australia erhalten.“

Bausteine für zukünftige Logik

Da die einzelnen programmierbaren Löcher in einer magnetischen Metallschicht liegen, hat die Gitter-Geometrie das Potenzial für Computer, die mit Spinwellen statt mit elektrischem Strom arbeiten. „Spinwellen kann man sich ähnlich wie La-Ola-Wellen in einem Fußballstadion vorstellen.

Die Welle pflanzt sich zwar durch das Stadion fort, die einzelnen Zuschauer, in unserem Fall die Elektronen, aber bleiben auf ihren Sitzplätzen“, erläutert Dr. Bali. Solche Spinwellen-Logikchips dürften weit weniger Strom verbrauchen als heutige Prozessoren, da keine elektrischen Ströme fließen müssen.

Außerdem kann in dem Lochgitter eine Vielzahl von Zuständen realisiert werden, wodurch den Spinwellen bestimmte Richtungen vorgeschrieben werden können. Damit ließe sich auch eine höhere Verarbeitungsgeschwindigkeit in zukünftigen Logikchips realisieren.

„Unsere Lochgitter könnten auch Bausteine für künftige Schaltkreise sein, die mit Spinwellen-Logik arbeiten“, schätzt Dr. Bali ein. Welche Dynamik die Spinwellen in solchen Lochgittern entwickeln, will nun der Physikdoktorand Tobias Schneider näher untersuchen. Er beteiligt sich unter anderem an der Entwicklung spezieller Computer-Programme, mit denen die komplexe Berechnung der Magnetzustände in einem Lochgitter möglich wird.

Publikation:
T. Schneider, R. Bali u. a.: „Programmability of Co-antidot Lattices of Optimized Geometry“, Scientific Reports Nr. 7, Artikelnr. 41157 (2017), DOI: 10.1038/srep41157.

Weitere Informationen:
Dr. Rantej Bali | Tobias Schneider
Tel. +49 351 260-2919 | -2689
E-Mail: r.bali@hzdr.de | t.schneider@hzdr.de

Medienkontakt:
Christine Bohnet | Pressesprecherin und Leitung HZDR-Kommunikation
Tel. +49 351 260-2450 oder +49 160 969 288 56 | E-Mail: c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Zur Beantwortung dieser wissenschaftlichen Fragen betreibt das HZDR große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat fünf Standorte (Dresden, Grenoble, Freiberg, Leipzig, Schenefeld) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

https://www.hzdr.de/presse/antidots

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Berichte zu: Elektronen Gitterstruktur HZDR Helmholtz-Zentrum Kobalt Materie Nanometer Spinwellen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics