Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dissonanzen in der Quantenschwingung

08.01.2019

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt

Eine Bierflasche entfaltet ihre Physik erst, wenn sie halb leer ist: bläst man auf die Öffnung, so erklingt ein Ton, dessen Höhe von der Füllmenge abhängt. Die Luftsäule in der Flasche wird in eine wellenartige Bewegung versetzt.


Ein infraroter Laserimpuls bestrahlt eine Lage eines Wolframdiselenid-Halbleiters. Dabei kann ein gestreuter Lichtpuls bei doppelter Frequenz im sichtbaren, blauen Spektralbereich beobachtet werden.

S. Bange / Universität Regensburg

Bläst man noch kräftiger, so verdoppelt sich die Frequenz des Tons: ein Oberton erklingt genau eine Oktave höher, eine Welle mit der doppelten Frequenz des Grundtons. Auch bei Lichtwellen kann die Erzeugung solcher Obertöne bei der Wechselwirkung mit Materie beobachtet werden.

Wie eine Forschergruppe der Universität Regensburg nun gezeigt hat, führt ein außergewöhnlicher Effekt der Quantenmechanik jedoch dazu, dass diese Schwingung bei genau der doppelten Frequenz unterdrückt wird – stattdessen „erklingt“ der Oberton bei etwas niedrigeren und etwas höheren Frequenzen.

Musikalisch betrachtet würde ein Grundton C nicht mit seiner Oktave c ertönen, sondern mit den zwei benachbarten Tönen H und cis. Die Oktave selbst wird durch die sogenannte „elektromagnetisch induzierte Transparenz“ unterdrückt.

Der erstmalige Nachweis dieser Transparenz in Halbleiter-Nanostrukturen verspricht die Entwicklung neuartiger Laserquellen sowie Bauelementen für die optische Verarbeitung von Quanteninformationen.

Das Wolframdiselenid ist bekannt für seinen schichtartigen Aufbau. Diese Eigenschaft macht das Material wie Graphit zu einem guten Trockenschmierstoff.

Die schwache Bindung einzelner Kristalllagen ermöglicht ihre einfache Trennung durch Abziehen mittels Klebeband – eine Technik, die Andre Geim und Konstantin Novoselov zum ersten Mal für Graphit verwendet haben, und die für ihre Experimente an einzelnen Graphitlagen, dem sogenannten Graphen, bereits 2010 mit dem Physik-Nobelpreis ausgezeichnet wurden.

Im Gegensatz zu Graphen sind einzelne Lagen des Wolframdiselenids jedoch Halbleiter, die besonders stark mit Licht wechselwirken. Dies macht sie für eine ganze Reihe von optoelektronischen Anwendungen interessant, sodass sie zurzeit im Fokus vieler internationaler Forschungsgruppen stehen.

Wird eine solche Kristalllage nun mit Laserlicht bestrahlt, so können die von der Quantenphysik als Wellen beschriebenen Elektronen im Material entsprechend Energie aus dem Lichtfeld aufnehmen. Sie ändern dabei ihre Energie sprunghaft, ein Prozess, der mit einer Schwingung der Elektronenwelle verbunden ist.

Finden sich im Material nun mindestens drei passende Elektronenenergien, so können sich die zugehörigen Schwingungen ähnlich wie Wasserwellen überlagern und gegenseitig verstärken oder auslöschen – die sogenannte Quanteninterferenz.

Diese lässt sich im Experiment durch die auftretende gestreute Strahlung nachweisen. Hierfür wird das Farbspektrum der von der Oberfläche zurückgestreuten Strahlung durch das Auffächern, zum Beispiel mittels eines Prismas, auf fehlende Farbkomponenten untersucht – bei genau der doppelten Frequenz des eingestrahlten Lichts fehlt dann eine Farbe im Spektrum.

Die Beobachtung ist für derart dünne Materialsysteme bisher einzigartig und ermöglicht die Übertragung der aus atomaren Gasen bekannten Quantenphänomene auf ultradünne Materialsysteme.

Die starke Licht-Materie Wechselwirkung in diesen „künstlichen Atomen“ könnte in Zukunft die Entwicklung neuartiger Oberflächenlaser ermöglichen, die ohne die sonst notwendige hohe Dichte angeregter Elektronenzustände auskommen.

Sie eröffnet auch neue Perspektiven für die Modifikation der elektronischen Eigenschaften von Festkörpernanostrukturen mit Hilfe von Lichtfeldern.

Die Ergebnisse des Forschungsteams der Universität Regensburg wurden in der renommierten Fachzeitschrift „Nature Physics“ veröffentlicht: http://dx.doi.org/10.1038/s41567-018-0384-5

Wissenschaftliche Ansprechpartner:

Dr. Sebastian Bange
Universität Regensburg
Lehrstuhl für Experimentelle und Angewandte Physik
Kontakt per E-Mail: sebastian.bange@ur.de

Originalpublikation:

Kai-Qiang Lin, Sebastian Bange, John M. Lupton: Quantum interference in second-harmonic generation from monolayer WSe2, Nature Physics (2019)
DOI: 10.1038/s41567-018-0384-5

Christina Glaser Referat II/2 - Media Relations & Communications | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Moleküle im Laserfeld wippen
17.01.2019 | Forschungsverbund Berlin e.V.

nachricht Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern
16.01.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

Wie Daten und Künstliche Intelligenz die Produktion optimieren

16.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leistungsschub für alle Omicron Laser

17.01.2019 | Messenachrichten

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungsnachrichten

Mit Blutgefäßen aus Stammzellen gegen Volkskrankheit Diabetes

17.01.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics