Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dissonanzen in der Quantenschwingung

08.01.2019

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt

Eine Bierflasche entfaltet ihre Physik erst, wenn sie halb leer ist: bläst man auf die Öffnung, so erklingt ein Ton, dessen Höhe von der Füllmenge abhängt. Die Luftsäule in der Flasche wird in eine wellenartige Bewegung versetzt.


Ein infraroter Laserimpuls bestrahlt eine Lage eines Wolframdiselenid-Halbleiters. Dabei kann ein gestreuter Lichtpuls bei doppelter Frequenz im sichtbaren, blauen Spektralbereich beobachtet werden.

S. Bange / Universität Regensburg

Bläst man noch kräftiger, so verdoppelt sich die Frequenz des Tons: ein Oberton erklingt genau eine Oktave höher, eine Welle mit der doppelten Frequenz des Grundtons. Auch bei Lichtwellen kann die Erzeugung solcher Obertöne bei der Wechselwirkung mit Materie beobachtet werden.

Wie eine Forschergruppe der Universität Regensburg nun gezeigt hat, führt ein außergewöhnlicher Effekt der Quantenmechanik jedoch dazu, dass diese Schwingung bei genau der doppelten Frequenz unterdrückt wird – stattdessen „erklingt“ der Oberton bei etwas niedrigeren und etwas höheren Frequenzen.

Musikalisch betrachtet würde ein Grundton C nicht mit seiner Oktave c ertönen, sondern mit den zwei benachbarten Tönen H und cis. Die Oktave selbst wird durch die sogenannte „elektromagnetisch induzierte Transparenz“ unterdrückt.

Der erstmalige Nachweis dieser Transparenz in Halbleiter-Nanostrukturen verspricht die Entwicklung neuartiger Laserquellen sowie Bauelementen für die optische Verarbeitung von Quanteninformationen.

Das Wolframdiselenid ist bekannt für seinen schichtartigen Aufbau. Diese Eigenschaft macht das Material wie Graphit zu einem guten Trockenschmierstoff.

Die schwache Bindung einzelner Kristalllagen ermöglicht ihre einfache Trennung durch Abziehen mittels Klebeband – eine Technik, die Andre Geim und Konstantin Novoselov zum ersten Mal für Graphit verwendet haben, und die für ihre Experimente an einzelnen Graphitlagen, dem sogenannten Graphen, bereits 2010 mit dem Physik-Nobelpreis ausgezeichnet wurden.

Im Gegensatz zu Graphen sind einzelne Lagen des Wolframdiselenids jedoch Halbleiter, die besonders stark mit Licht wechselwirken. Dies macht sie für eine ganze Reihe von optoelektronischen Anwendungen interessant, sodass sie zurzeit im Fokus vieler internationaler Forschungsgruppen stehen.

Wird eine solche Kristalllage nun mit Laserlicht bestrahlt, so können die von der Quantenphysik als Wellen beschriebenen Elektronen im Material entsprechend Energie aus dem Lichtfeld aufnehmen. Sie ändern dabei ihre Energie sprunghaft, ein Prozess, der mit einer Schwingung der Elektronenwelle verbunden ist.

Finden sich im Material nun mindestens drei passende Elektronenenergien, so können sich die zugehörigen Schwingungen ähnlich wie Wasserwellen überlagern und gegenseitig verstärken oder auslöschen – die sogenannte Quanteninterferenz.

Diese lässt sich im Experiment durch die auftretende gestreute Strahlung nachweisen. Hierfür wird das Farbspektrum der von der Oberfläche zurückgestreuten Strahlung durch das Auffächern, zum Beispiel mittels eines Prismas, auf fehlende Farbkomponenten untersucht – bei genau der doppelten Frequenz des eingestrahlten Lichts fehlt dann eine Farbe im Spektrum.

Die Beobachtung ist für derart dünne Materialsysteme bisher einzigartig und ermöglicht die Übertragung der aus atomaren Gasen bekannten Quantenphänomene auf ultradünne Materialsysteme.

Die starke Licht-Materie Wechselwirkung in diesen „künstlichen Atomen“ könnte in Zukunft die Entwicklung neuartiger Oberflächenlaser ermöglichen, die ohne die sonst notwendige hohe Dichte angeregter Elektronenzustände auskommen.

Sie eröffnet auch neue Perspektiven für die Modifikation der elektronischen Eigenschaften von Festkörpernanostrukturen mit Hilfe von Lichtfeldern.

Die Ergebnisse des Forschungsteams der Universität Regensburg wurden in der renommierten Fachzeitschrift „Nature Physics“ veröffentlicht: http://dx.doi.org/10.1038/s41567-018-0384-5

Wissenschaftliche Ansprechpartner:

Dr. Sebastian Bange
Universität Regensburg
Lehrstuhl für Experimentelle und Angewandte Physik
Kontakt per E-Mail: sebastian.bange@ur.de

Originalpublikation:

Kai-Qiang Lin, Sebastian Bange, John M. Lupton: Quantum interference in second-harmonic generation from monolayer WSe2, Nature Physics (2019)
DOI: 10.1038/s41567-018-0384-5

Christina Glaser Referat II/2 - Media Relations & Communications | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung
16.08.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Schrödingers Katze mit 20 Qubits
13.08.2019 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Crispr-Methode revolutioniert

Forschende der ETH Zürich entwickelten die bekannte Crispr/Cas-Methode weiter. Es ist nun erstmals möglich, Dutzende, wenn nicht Hunderte von Genen in einer Zelle gleichzeitig zu verändern.

Crispr/Cas ist in aller Munde. Mit dieser biotechnologischen Methode lassen sich in Zellen verhältnismässig einfach und schnell einzelne Gene präzise...

Im Focus: Wie schwingen Atome in Graphen-Nanostrukturen?

Innovative neue Technik verschiebt die Grenzen der Nanospektrometrie für Materialdesign

Um das Verhalten von modernen Materialien wie Graphen zu verstehen und für Bauelemente der Nano-, Opto- und Quantentechnologie zu optimieren, ist es...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gedanken rasen zum Erfolg: CYBATHLON BCI Series 2019

16.08.2019 | Veranstaltungen

Impfen – Kleiner Piks mit großer Wirkung

15.08.2019 | Veranstaltungen

Internationale Tagung zur Katalyseforschung in Aachen

14.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

16.08.2019 | Physik Astronomie

Solarflugzeug icaré testet elektrische Flächenendantriebe

16.08.2019 | Energie und Elektrotechnik

Neue Überlebensstrategie der Pneumokokken im Zentralnervensystem identifiziert

16.08.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics