Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die wahre Macht des Sonnenwinds

12.06.2018

Elektrisch geladene Teilchen von der Sonne schlagen mit großer Wucht auf Monden und Planeten ein. Was dabei passiert, lässt sich durch neue Forschungsergebnisse der TU Wien erklären.

Die Planeten und Monde unseres Sonnensystems werden ununterbrochen bombardiert – durch rasend schnelle Teilchen, fortgeschleudert von der Sonne. Auf der Erde hat das, abgesehen von den faszinierenden Polarlichtern, kaum Auswirkungen, weil uns die dichte Atmosphäre und das Magnetfeld der Erde vor diesen Sonnenwind-Teilchen schützen. Doch am Mond oder auf dem Merkur sieht die Sache anders aus: Dort wird die oberste Gesteinsschicht nach und nach durch einschlagende Sonnen-Partikel abgetragen.


Teilchen von der Sonne treffen mit hoher Geschwindigkeit auf dem Merkur ein.

NASA / TU Wien


Paul Szabo im Labor an der TU Wien

TU Wien

Neue Ergebnisse der TU Wien zeigen nun, dass bisherige Modelle dieses Prozesses unvollständig sind. Das Sonnenwind-Bombardement hat teilweise viel drastischere Auswirkungen als bisher gedacht. Wichtig sind diese Erkenntnisse unter anderem für die ESA-Mission BepiColombo, Europas erste Merkur-Mission. Die Ergebnisse wurden nun im Planetologie-Fachjournal „Icarus“ veröffentlicht.

Eine Exosphäre aus zerschossenem Gestein

„Der Sonnenwind besteht aus geladenen Teilchen – hauptsächlich aus Wasserstoff- und Helium-Ionen, aber auch schwerere Atome bis hin zu Eisen spielen eine Rolle“, erklärt Prof. Friedrich Aumayr vom Institut für Angewandte Physik der TU Wien.

Diese Teilchen treffen mit einer Geschwindigkeit von 400 bis 800 km pro Sekunde auf dem Oberflächengestein auf und können dabei zahlreiche andere Atome herausschleudern. Diese Teilchen können hoch aufsteigen, bevor die wieder zur Oberfläche zurückfallen, dadurch entsteht rund um den Mond oder den Merkur eine „Exosphäre“ – eine extrem dünne Atmosphäre aus Atomen, die durch Sonnenwind-Bombardement aus dem Oberflächengestein herausgeschlagen wurden.

Diese Exosphäre ist für die Weltraumforschung höchst interessant, denn aus ihrer Zusammensetzung kann man auf den chemischen Aufbau der Gesteinsoberfläche schließen – und es ist deutlich einfacher, die Exosphäre zu analysieren als ein Raumfahrzeug auf der Oberfläche zu landen. Die ESA wird im Oktober 2018 die Sonde BepiColombo zum Merkur schicken, die aus der Zusammensetzung der Exosphäre Information über die geologischen und chemischen Eigenschaften des Merkurs gewinnen soll.

Auf die Ladung kommt es an

Dafür ist es aber nötig, die Auswirkungen des Sonnenwindes auf das Gestein genau zu verstehen, und genau dabei gab es bisher noch entscheidende Wissenslücken. An der TU Wien untersuchte man daher nun die Auswirkung von Ionenbeschuss auf Wollastonit, ein typisches Mondgestein.

„Bisher ging man davon aus, dass in erster Linie die Bewegungsenergie der schnellen Teilchen dafür verantwortlich ist, dass die Gesteinsoberfläche atomar zerstäubt wird“, sagt Paul Szabo, Dissertant im Team von Friedrich Aumayr und Erstautor der aktuellen Publikation.

„Das ist aber nur die halbe Wahrheit: Wir konnten zeigen, dass die hohe elektrische Ladung der Teilchen eine entscheidende Rolle spielt. Sie ist der Grund, dass die Teilchen auf der Oberfläche viel mehr Schaden anrichten können als bisher gedacht.“

Wenn die Teilchen des Sonnenwindes mehrfach geladen sind, wenn ihnen also mehrere Elektronen fehlen, dann tragen sie eine große Menge an Energie, die beim Einschlag blitzartig freigesetzt wird. „Wenn man das nicht berücksichtigt, schätzt man Auswirkungen des Sonnenwindes auf verschiedene Gesteine ganz falsch ein“, sagt Paul Szabo. Daher kann man mit einem falschen Modell aus der Zusammensetzung der Exosphäre auch keine exakten Schlüsse auf das Oberflächengestein ziehen.

Den weitaus größten Anteil des Sonnenwindes bilden Protonen, und so dachte man bisher auch, dass sie das Gestein am stärksten beeinflussen. Doch wie sich nun zeigt, spielt in Wirklichkeit Helium die Hauptrolle, weil es im Gegensatz zu den Protonen gleich doppelt positiv geladen sein kann. Auch der Beitrag schwererer Ionen mit noch größerer elektrischer Ladung darf nicht vernachlässigt werden.

Für diese Erkenntnisse war eine Kooperation verschiedener Forschungsgruppen nötig: Hochpräzisions-Messungen wurden mit einer speziell am Institut für Angewandte Physik entwickelten Mikrowaage durchgeführt. Am Vienna Scientific Cluster VSC-3 wurden aufwändige Computersimulationen durchgeführt, um die Ergebnisse richtig deuten zu können. Die Computercodes waren ursprünglich für die Kernfusionsforschung entwickelt worden – denn auch dort spielen Teilchen, die mit hoher Energie auf Oberflächen einschlagen, eine wichtige Rolle. Auch das Analytical Instrumentation Center und das Institut für Chemische Technologien und Analytik der TU Wien lieferten wichtige Beiträge.

Kooperationspartner des Forschungsprojektes waren außerdem das Physik-Institut der Universität Bern und das Weltrauminstitut der österreichischen Akademie der Wissenschaften in Graz, das nun auch mithelfen soll, die neuen Erkenntnisse in die Analyse der bevorstehenden ESA-Weltraummission einzubringen.

Originalpublikation:
Solar Wind Sputtering of Wollastonite as a Lunar Analogue Material – Comparisons between Experiments and Simulation; P. Szabo, R. Chiba, H. Biber, R. Stadlmayr, B. Berger, D. Mayer, A. Mutzke, M. Doppler, M. Sauer, J. Appenroth, J. Fleig, A. Foelske-Schmitz, H. Hutter, K. Mezger, H. Lammer, A. Galli, P. Wurz, F. Aumayr; Icarus, 2018, DOI: 10.1016/j.icarus.2018.05.028

Die ESA-Mission Bepicolombo: http://sci.esa.int/bepicolombo/

Bilderdownload: https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2018/Sonnenwind

Rückfragehinweis:
Prof. Friedrich Aumayr
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstr. 8, 1040 Wien
T: +43-1-58801-13430
friedrich.aumayr@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Physiker entdecken neuen Transportmechanismus von Nanopartikeln durch Zellmembranen
14.12.2018 | Universität des Saarlandes

nachricht Tanz mit dem Feind
12.12.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

Show Time für digitale Medizin-Innovationen

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Krankheiten entstehen, wenn das Netzwerk von regulatorischen Autoantikörpern aus der Balance gerät

14.12.2018 | Medizin Gesundheit

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungsnachrichten

Cohesin treibt die Alterung von Blutstammzellen voran

14.12.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics