Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Quantenschaukel - ein Pendel das gleichzeitig vor und zurück schwingt

09.05.2016

Ultrakurze Terahertz-Impulse regen Zwei-Quanten-Oszillationen von Atomen in einem Halbleiterkristall an. Die von den bewegten Atomen abgestrahlten Terahertz-Wellen werden mittels einer neuen zeitaufgelösten Technik analysiert und zeigen den nicht-klassischen Charakter der Atombewegungen von großer Amplitude.

Das klassische Pendel einer Standuhr schwingt mit einer wohl definierten Auslenkung und Geschwindigkeit zu jedem Zeitpunkt vor und zurück. Während dieser Schwingung bleibt seine Gesamtenergie konstant, welche durch eine beliebig wählbare Anfangsauslenkung vorgegeben ist.


Abb. 1: Experimentell gemessene Kurven: (a) Zwei-dimensionaler (2D) scan der Summe der elektrischen Felder E(τ,t) der drei treibenden THz-Impulse A, B und C als Funktion der Kohärenzzeit τ und der Realzeit t. Das Konturdiagramm ist rot gefärbt für positive elektrische Felder und blau gefärbt für negative elektrische Felder. (b) 2D scan des von der Zwei-Phononen-Kohärenz im Halbleiter Indiumantimonid nichtlinear abgestrahlten, elektrischen Feldes ENL(τ,t) Die orange Linie zeigt die Mitte von THz-Impuls A. (c) Elektrische Feldtransiente ENL(0,t) gemessen für Kohärenzzeit τ=0. Bild: MBI

Oszillatoren in der Quantenwelt der Atome und Moleküle verhalten sich völlig anders: Deren Energie hat diskrete Werte entsprechend der unterschiedlichen Quantenzustände eines Oszillators. Der "verschmierte" Ort eines Atoms in einem Energieeigenzustand des Oszillators wird mit Hilfe der Wellenfunktion beschrieben, deren Amplitude keinerlei Schwingungen aufweist.

Schwingungsbewegungen in der Quantenwelt erfordern eine Überlagerung unterschiedlicher Quantenzustände - sogenannte Kohärenzen oder Wellenpakete. Die Überlagerung zweier benachbarter Oszillatorzustände entspricht einer Ein-Quantenkohärenz, bei der die Atombewegung dem klassischen Pendel sehr ähnelt.

Viel interessanter sind Zwei-Quantenkohärenzen, eine waschechte nicht-klassische Anregung, bei der ein Atom gleichzeitig an zwei verschiedenen Orten sein kann. Seine Geschwindigkeit verhält sich auch nicht-klassisch, was bedeutet, dass es sich zur selben Zeit von links nach rechts und von rechts nach links bewegt (siehe Movie).

Solche Bewegungen existieren nur für sehr kurze Zeiten, weil die wohl definierte Überlagerung der Quantenzustände aufgrund der sogenannten Dekohärenz innerhalb weniger Pikosekunden (1 Pikosekunde = 10(hoch)-12s) zerfällt. Solche Zwei-Phononen-Kohärenzen sind äußerst wichtig in dem neuen Forschungsgebiet der sogenannten Quanten-Phononik. Dort werden nicht-klassische Atombewegungen wie etwa "gequetschte" oder "verschränkte" Phononen untersucht.

In der neuesten Ausgabe der Fachzeitschrift Physical Review Letters haben Forscher des Max-Born-Instituts in Berlin die neue Methode der Zwei-Dimensionalen (2D) Terahertz-Spektroskopie eingesetzt um nicht-klassische Zwei-Phononen-Kohärenzen mit großen räumlichen Amplituden zu erzeugen und nachzuweisen. In den Experimenten wechselwirkt eine Sequenz von drei phasengekoppelten THz-Impulsen mit einem 70-μm dicken Kristall des Halbleiters Indiumantimonid (InSb).

Das elektrische Feld, das die bewegten Atome abstrahlen, dient als eine Sonde für die Atombewegung in Echtzeit. Ein zwei-dimensionales Abrasterverfahren (ein sogenannter 2D-scan), bei dem die zeitliche Verzögerung zwischen den drei THz-Impulsen variiert wird, zeigte ausgeprägte Zwei-Phononen-Signale und konnte deren Zeitstruktur aufdecken [Abb. 1].

Eine detaillierte theoretische Analyse brachte die Einsicht, dass nichtlineare Vielfach-Wechselwirkungen von allen drei THz-Impulsen nötig sind um solche starken Zwei-Phonen-Kohärenzen anzuregen.

Die neue experimentelle Methode erlaubte zum ersten Mal Zwei-Phononen-Kohärenzen großer Amplitude in einem Kristall nachzuweisen. Alle experimentellen Beobachtungen sind in exzellenter Übereinstimmung mit der Quantentheorie. Dieser neue Typus von 2D-THz-Spektroskopie weist den Weg zur Erzeugung, Analyse und Manipulation von anderen Niedrig-Energie-Anregungen in Festkörpern, wie z.B. Magnonen oder optischen Übergängen in Exzitonen oder an Störstellen gebundenen Elektronen.

Originalpublikation: Physical Review Letters 116, 177401
Two-Phonon Quantum Coherences in Indium Antimonide Studied by Nonlinear Two-Dimensional Terahertz Spectroscopy;
Carmine Somma, Giulia Folpini, Klaus Reimann, Michael Woerner, and Thomas Elsaesser
DOI: http://dx.doi.org/10.1103/PhysRevLett.116.177401

Kontakt
Max-Born-Institut für Nichtlineare Optik und Kurzzeit­spektroskopie (MBI)
Max-Born-Str. 2A, 12489 Berlin

Prof. Klaus Reimann
reimann@mbi-berlin.de
Tel. 030 6392 1476

Dr. Michael Wörner
woerner@mbi-berlin.de
Tel. 030 6392 1470

Prof. Dr. Thomas Elsässer
elsasser@mbi-berlin.de
Tel. 030 6392 1400


Movie: Veranschaulichung von nicht-klassischen Quantenkohärenzen in Materie. Die zwei Parabeln (scharze Kurven) zeigen die Potentialoberflächen von harmonischen Oszillatoren, die die Schwingungen von Atomen in einem Kristall um ihre Gleichgewichtslage repräsentieren - die sogenannten Phononen. Die blauen Kurven zeigen die Aufenthaltswahrscheinlichkeit der Atome an unterschiedlichen Orten im thermischen Gleichgewicht. Die quantenmechanische Unschärferelationen erzwingt eine endliche räumliche Ausdehnung solcher Verteilungsfunktionen. Die roten Kurven zeigen die zeitabhängige Aufenthaltswahrscheinlichkeit von verschiedenen kohärent schwingender Quantenzustände in der Materie. Links sieht man eine Ein-Phonon-Kohärenz, bei der die quantenmechanische Bewegung der Atome stark der klassischen Bewegung eines Pendels ähnelt (türkise Kugel). Diese bewegt sich während der Oszillation entweder von links nach rechts oder von rechts nach links. Auf der rechten Seite sehen wir die zeitabhängige Aufenthaltswahrscheinlichkeit einer Zwei-Phononen-Kohärenz. Die Quantenmechanik erlaubt eine nicht-klassische Bewegung, bei der ein Atom gleichzeitig an zwei unterschiedlichen Orten verweilen kann. Die Geschwindigkeit der Atome verhält sich auch nicht-klassisch, d.h., es kann zur gleichen Zeit von links nach rechts und von rechts nach links schwingen. Bei einem perfekten harmonischen Oszillator würden die Teilchenströme dieser beiden Anteile sich exakt auslöschen. Daher muss eine kleine Anharmonizität vorliegen, damit man die Emission eines kohärenten elektrischen Feldes wie in Abbildung 1(c) beobachten kann.

http://www.mbi-berlin.de/images/highlights/movie/InSbmovie7.avi

Weitere Informationen:

http://www.mbi-berlin.de
http://www.mbi-berlin.de/images/highlights/movie/InSbmovie7.avi

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

nachricht Mission BepiColombo: Jenaer Sensor hilft, Geheimnisse des Merkur zu entschlüsseln
19.10.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics