Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Quantenschaukel - ein Pendel das gleichzeitig vor und zurück schwingt

09.05.2016

Ultrakurze Terahertz-Impulse regen Zwei-Quanten-Oszillationen von Atomen in einem Halbleiterkristall an. Die von den bewegten Atomen abgestrahlten Terahertz-Wellen werden mittels einer neuen zeitaufgelösten Technik analysiert und zeigen den nicht-klassischen Charakter der Atombewegungen von großer Amplitude.

Das klassische Pendel einer Standuhr schwingt mit einer wohl definierten Auslenkung und Geschwindigkeit zu jedem Zeitpunkt vor und zurück. Während dieser Schwingung bleibt seine Gesamtenergie konstant, welche durch eine beliebig wählbare Anfangsauslenkung vorgegeben ist.


Abb. 1: Experimentell gemessene Kurven: (a) Zwei-dimensionaler (2D) scan der Summe der elektrischen Felder E(τ,t) der drei treibenden THz-Impulse A, B und C als Funktion der Kohärenzzeit τ und der Realzeit t. Das Konturdiagramm ist rot gefärbt für positive elektrische Felder und blau gefärbt für negative elektrische Felder. (b) 2D scan des von der Zwei-Phononen-Kohärenz im Halbleiter Indiumantimonid nichtlinear abgestrahlten, elektrischen Feldes ENL(τ,t) Die orange Linie zeigt die Mitte von THz-Impuls A. (c) Elektrische Feldtransiente ENL(0,t) gemessen für Kohärenzzeit τ=0. Bild: MBI

Oszillatoren in der Quantenwelt der Atome und Moleküle verhalten sich völlig anders: Deren Energie hat diskrete Werte entsprechend der unterschiedlichen Quantenzustände eines Oszillators. Der "verschmierte" Ort eines Atoms in einem Energieeigenzustand des Oszillators wird mit Hilfe der Wellenfunktion beschrieben, deren Amplitude keinerlei Schwingungen aufweist.

Schwingungsbewegungen in der Quantenwelt erfordern eine Überlagerung unterschiedlicher Quantenzustände - sogenannte Kohärenzen oder Wellenpakete. Die Überlagerung zweier benachbarter Oszillatorzustände entspricht einer Ein-Quantenkohärenz, bei der die Atombewegung dem klassischen Pendel sehr ähnelt.

Viel interessanter sind Zwei-Quantenkohärenzen, eine waschechte nicht-klassische Anregung, bei der ein Atom gleichzeitig an zwei verschiedenen Orten sein kann. Seine Geschwindigkeit verhält sich auch nicht-klassisch, was bedeutet, dass es sich zur selben Zeit von links nach rechts und von rechts nach links bewegt (siehe Movie).

Solche Bewegungen existieren nur für sehr kurze Zeiten, weil die wohl definierte Überlagerung der Quantenzustände aufgrund der sogenannten Dekohärenz innerhalb weniger Pikosekunden (1 Pikosekunde = 10(hoch)-12s) zerfällt. Solche Zwei-Phononen-Kohärenzen sind äußerst wichtig in dem neuen Forschungsgebiet der sogenannten Quanten-Phononik. Dort werden nicht-klassische Atombewegungen wie etwa "gequetschte" oder "verschränkte" Phononen untersucht.

In der neuesten Ausgabe der Fachzeitschrift Physical Review Letters haben Forscher des Max-Born-Instituts in Berlin die neue Methode der Zwei-Dimensionalen (2D) Terahertz-Spektroskopie eingesetzt um nicht-klassische Zwei-Phononen-Kohärenzen mit großen räumlichen Amplituden zu erzeugen und nachzuweisen. In den Experimenten wechselwirkt eine Sequenz von drei phasengekoppelten THz-Impulsen mit einem 70-μm dicken Kristall des Halbleiters Indiumantimonid (InSb).

Das elektrische Feld, das die bewegten Atome abstrahlen, dient als eine Sonde für die Atombewegung in Echtzeit. Ein zwei-dimensionales Abrasterverfahren (ein sogenannter 2D-scan), bei dem die zeitliche Verzögerung zwischen den drei THz-Impulsen variiert wird, zeigte ausgeprägte Zwei-Phononen-Signale und konnte deren Zeitstruktur aufdecken [Abb. 1].

Eine detaillierte theoretische Analyse brachte die Einsicht, dass nichtlineare Vielfach-Wechselwirkungen von allen drei THz-Impulsen nötig sind um solche starken Zwei-Phonen-Kohärenzen anzuregen.

Die neue experimentelle Methode erlaubte zum ersten Mal Zwei-Phononen-Kohärenzen großer Amplitude in einem Kristall nachzuweisen. Alle experimentellen Beobachtungen sind in exzellenter Übereinstimmung mit der Quantentheorie. Dieser neue Typus von 2D-THz-Spektroskopie weist den Weg zur Erzeugung, Analyse und Manipulation von anderen Niedrig-Energie-Anregungen in Festkörpern, wie z.B. Magnonen oder optischen Übergängen in Exzitonen oder an Störstellen gebundenen Elektronen.

Originalpublikation: Physical Review Letters 116, 177401
Two-Phonon Quantum Coherences in Indium Antimonide Studied by Nonlinear Two-Dimensional Terahertz Spectroscopy;
Carmine Somma, Giulia Folpini, Klaus Reimann, Michael Woerner, and Thomas Elsaesser
DOI: http://dx.doi.org/10.1103/PhysRevLett.116.177401

Kontakt
Max-Born-Institut für Nichtlineare Optik und Kurzzeit­spektroskopie (MBI)
Max-Born-Str. 2A, 12489 Berlin

Prof. Klaus Reimann
reimann@mbi-berlin.de
Tel. 030 6392 1476

Dr. Michael Wörner
woerner@mbi-berlin.de
Tel. 030 6392 1470

Prof. Dr. Thomas Elsässer
elsasser@mbi-berlin.de
Tel. 030 6392 1400


Movie: Veranschaulichung von nicht-klassischen Quantenkohärenzen in Materie. Die zwei Parabeln (scharze Kurven) zeigen die Potentialoberflächen von harmonischen Oszillatoren, die die Schwingungen von Atomen in einem Kristall um ihre Gleichgewichtslage repräsentieren - die sogenannten Phononen. Die blauen Kurven zeigen die Aufenthaltswahrscheinlichkeit der Atome an unterschiedlichen Orten im thermischen Gleichgewicht. Die quantenmechanische Unschärferelationen erzwingt eine endliche räumliche Ausdehnung solcher Verteilungsfunktionen. Die roten Kurven zeigen die zeitabhängige Aufenthaltswahrscheinlichkeit von verschiedenen kohärent schwingender Quantenzustände in der Materie. Links sieht man eine Ein-Phonon-Kohärenz, bei der die quantenmechanische Bewegung der Atome stark der klassischen Bewegung eines Pendels ähnelt (türkise Kugel). Diese bewegt sich während der Oszillation entweder von links nach rechts oder von rechts nach links. Auf der rechten Seite sehen wir die zeitabhängige Aufenthaltswahrscheinlichkeit einer Zwei-Phononen-Kohärenz. Die Quantenmechanik erlaubt eine nicht-klassische Bewegung, bei der ein Atom gleichzeitig an zwei unterschiedlichen Orten verweilen kann. Die Geschwindigkeit der Atome verhält sich auch nicht-klassisch, d.h., es kann zur gleichen Zeit von links nach rechts und von rechts nach links schwingen. Bei einem perfekten harmonischen Oszillator würden die Teilchenströme dieser beiden Anteile sich exakt auslöschen. Daher muss eine kleine Anharmonizität vorliegen, damit man die Emission eines kohärenten elektrischen Feldes wie in Abbildung 1(c) beobachten kann.

http://www.mbi-berlin.de/images/highlights/movie/InSbmovie7.avi

Weitere Informationen:

http://www.mbi-berlin.de
http://www.mbi-berlin.de/images/highlights/movie/InSbmovie7.avi

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics