Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Kraft des Vakuums

03.12.2018

Wissenschaftler der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am Center for Free-Electron Laser Science in Hamburg haben mit theoretischen Berechnungen und Computersimulationen gezeigt, dass in atomar dünnen Schichten eines Supraleiters durch virtuelle Photonen die Kraft zwischen Elektronen und Gitterverzerrungen kontrollieren lässt. Dies könnte die Entwicklung neuer Supraleiter für energiesparende Geräte und viele andere technische Anwendungen ermöglichen.

Das Vakuum ist nicht leer. Was für Laien wie Zauberei klingt, beschäftigt Physiker seit der Entwicklung der Quantenmechanik. Das scheinbare Nichts brodelt unablässig und erzeugt selbst am absoluten Temperatur-Nullpunkt andauernd Lichtfluktuationen.


Die Vakuum-Fluktuationen des Lichts (gelbe Welle) werden in einem optischen Hohlraum (reflektierende Spiegel oben und unten) verstärkt.

Joerg M. Harms, MPSD

Diese virtuellen Photonen warten gewissermaßen darauf, gebraucht zu werden. Sie können Kräfte vermitteln und Eigenschaften von Materie verändern.

Die Vakuum-Kraft ist beispielsweise dafür bekannt, den Casimir-Effekt zu erzeugen. Bringt man zwei parallele metallische Platten eines Kondensators sehr nah zusammen, dann kann man eine mikroskopisch kleine Anziehungskraft zwischen ihnen messen, selbst wenn die Platten nicht elektrisch aufgeladen sind.

Diese Kraft entsteht, indem die beiden Platten virtuelle Photonen austauschen. Das kann man sich vorstellen wie zwei Eisläufer, die sich einen Ball hin und her werfen und durch den Rückstoß voneinander abgestoßen werden. Wenn man den Ball nicht sehen würde, könnte man denken, dass eine abstoßende Kraft zwischen den Eisläufern wirkt.

Das MPSD-Team um Michael Sentef, Michael Ruggenthaler und Angel Rubio hat nun eine Arbeit in Science Advances veröffentlicht, die die Vakuum-Kraft mit modernsten Materialien in Verbindung bringt.

Speziell beschäftigten sie sich mit der Frage, was passiert, wenn man den zweidimensionalen Hochtemperatur-Supraleiter Eisenselenid (FeSe) auf einem Substrat von SrTiO3 zwischen zwei parallele metallische Platten bringt, zwischen denen die virtuellen Photonen hin- und herfliegen.

Das Resultat der Überlegungen und Simulationen: Man kann die Kraft des Vakuums nutzen, um die schnellen Elektronen in der 2D-Ebene stärker an die senkrecht dazu schwingenden Gittervibrationen des Substrats zu koppeln. Die Kopplung zwischen supraleitenden Elektronen und den Schwingungen des Kristallgitters (Phononen) ist ein zentraler Baustein der besonderen Eigenschaften vieler Materialien.

„Wir sind erst am Anfang unserer Verständnisses dieser Prozesse“, sagt Michael Sentef. „Beispielsweise wissen wir gar nicht so genau, wie stark der Einfluss des Vakuum-Lichts auf die Schwingungen an der Oberfläche in der Realität wäre. Wir reden hier von Quasiteilchen aus Licht und Phononen, den Phonon-Polaritonen.“

In 3D-Isolatoren wurden Phonon-Polaritonen mit Lasern schon vor Jahrzehnten gemessen. Für die komplexen neuen 2D-Quantenmaterialien ist dies jedoch alles Neuland. „Wir hoffen natürlich, dass wir durch unsere Arbeit die experimentellen Kollegen dazu anregen, unsere Vorhersagen zu überprüfen“, ergänzt Sentef.

MPSD-Theorie-Direktor Angel Rubio ist begeistert von den neuen Möglichkeiten: „Die Theorien und numerischen Simulationen in unserer Abteilung sind ein grundlegender Baustein für eine ganz neue Generation an technischen Entwicklungen.

Noch viel wichtiger ist, dass Forscher dadurch ganz neu über alte Probleme der Wechselwirkung zwischen Licht und Struktur der Materie nachdenken.“ Rubio ist sehr optimistisch, was die Grundlagenforschung in diesem Bereich angeht.

„Zusammen mit den experimentellen Fortschritten, etwa der kontrollierten Herstellung und präzisen Messung atomarer Strukturen und deren elektronischer Eigenschaften, können wir auf große Entdeckungen hoffen.“

Seiner Meinung nach stünden die Forscher erst am Anfang eines neuen Zeitalters im atomaren Design von Funktionalitäten in chemischen Verbindungen, besonders in 2D-Materialien und komplexen Molekülen. Und Rubio ist überzeugt: „Die Kraft des Vakuums hilft uns dabei.“

Ausführliche Bildunterschrift:
Die Vakuum-Fluktuationen des Lichts (gelbe Welle) werden in einem optischen Hohlraum (reflektierende Spiegel oben und unten) verstärkt. Die Schwingungen des Kristallgitters (rote Atome) an einer zweidimensionalen Grenzfläche surfen auf dieser starken Lichtwelle. Die so vermischten Licht-Gitterschwingungswellen koppeln besonders stark an Elektronen in einem zweidimensionalen atomar dünnen Material (grüne und gelbe Atome) und verändern so dessen Eigenschaften.

Wissenschaftliche Ansprechpartner:

Dr. Michael Sentef
Forschungsgruppenleiter
Telefon: +49 (0)40 8998-88350
E-Mail: michael.sentef@mpsd.mpg.de

Prof. Dr. Angel Rubio
Geschäftsführender Direktor
angel.rubio@mpsd.mpg.de

Originalpublikation:

M. A. Sentef, M. Ruggenthaler and A. Rubio
Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity
Science Advances, 30 Nov 2018: Vol. 4, no. 11, eaau6969.
DOI: 10.1126/sciadv.aau6969

Weitere Informationen:

http://www.mpsd.mpg.de/511194/2018-11-sentef-vacuum MPSD Pressemitteilung
https://dx.doi.org/10.1126/sciadv.aau6969 Originalveröffentlichung

Dr. Joerg Harms | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung
16.08.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Schrödingers Katze mit 20 Qubits
13.08.2019 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Crispr-Methode revolutioniert

Forschende der ETH Zürich entwickelten die bekannte Crispr/Cas-Methode weiter. Es ist nun erstmals möglich, Dutzende, wenn nicht Hunderte von Genen in einer Zelle gleichzeitig zu verändern.

Crispr/Cas ist in aller Munde. Mit dieser biotechnologischen Methode lassen sich in Zellen verhältnismässig einfach und schnell einzelne Gene präzise...

Im Focus: Wie schwingen Atome in Graphen-Nanostrukturen?

Innovative neue Technik verschiebt die Grenzen der Nanospektrometrie für Materialdesign

Um das Verhalten von modernen Materialien wie Graphen zu verstehen und für Bauelemente der Nano-, Opto- und Quantentechnologie zu optimieren, ist es...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gedanken rasen zum Erfolg: CYBATHLON BCI Series 2019

16.08.2019 | Veranstaltungen

Impfen – Kleiner Piks mit großer Wirkung

15.08.2019 | Veranstaltungen

Internationale Tagung zur Katalyseforschung in Aachen

14.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

16.08.2019 | Physik Astronomie

Solarflugzeug icaré testet elektrische Flächenendantriebe

16.08.2019 | Energie und Elektrotechnik

Neue Überlebensstrategie der Pneumokokken im Zentralnervensystem identifiziert

16.08.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics