Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die klassische Physik hat den Dreh heraus

11.03.2016

Einfache Spin-Modelle, die ursprünglich für die Erklärung des Magnetismus entwickelt wurden, können sämtliche Phänomene der klassischen Physik reproduzieren, so Wissenschaftler am MPQ und UCL.

Gemma De las Cuevas vom Max-Planck-Institut für Quantenoptik (MPQ) in Garching und Toby Cubitt vom University College London (UCL) haben erstmals gezeigt, dass solche einfachen universellen Modelle existieren. Ihre theoretischen Untersuchungen bauen auf Pionierarbeiten aus den 80er Jahren auf, die an der Schnittstelle von theoretischer Computerwissenschaft und theoretischer Physik erfolgten. Danach sind extrem einfache Computer universell: sie können im Prinzip alles berechnen, was überhaupt berechnet werden kann. Die neuen Resultate demonstrieren, dass etwas sehr analoges auch in der Physik auftritt (Science, 11. März 2016).


Universelle Modelle enthalten sämtliche Spin-Modelle, so wie weißes Licht alle Farben enthält.

Grafik: Christian Hackenberger

Spin-Systeme modellieren die Wechselwirkungen zwischen den Teilchen, aus denen ein Stoff besteht, in einer sehr vereinfachten Weise. In der einfachsten Variante kann jedes Teilchen bzw. jeder Spin nur in einem von zwei möglichen Zuständen sein, z.B. aufwärts oder abwärts gerichtet. Die Wechselwirkung zwischen benachbarten Teilchen führt dazu, dass sie sich entweder parallel oder entgegengesetzt ausrichten. Dieses Modell ist nach dem Physiker Ernst Ising benannt, der es 1924 in seiner Doktorarbeit untersuchte.

„Modelle in unterschiedlichen Dimensionen oder mit unterschiedlichen Symmetrien weisen ein sehr unterschiedliches physikalisches Verhalten auf. Unsere Untersuchungen zeigen, dass alle diese Unterschiede verschwinden, wenn man Modelle mit variablen Kopplungsstärken betrachtet, da sie alle äquivalent zu universellen Modellen sind“, sagt Dr. Gemma De las Cuevas, Wissenschaftlerin in der Abteilung Theorie von Prof. Ignacio Cirac am MPQ.

Frühere Arbeiten von De las Cuevas und anderen haben dieser Arbeit den Weg gewiesen. Sie zeigten, dass in Bezug auf thermodynamische Eigenschaften in komplizierteren Modellen etwas Ähnliches passiert. Diese neue Arbeit zeigt, dass das Ergebnis für die gesamte klassische Physik und für viel einfachere Modelle Gültigkeit hat. Indem die zu Grunde liegende Physik mit der Komplexitätstheorie verbunden wird – einem Zweig der theoretischen Computerwissenschaften – erklären die Ergebnisse auch, woher die Universalität kommt, und sie definieren genau, welche Modelle universell sind und welche nicht.

„Einen Computerwissenschaftler werden diese Ergebnisse vielleicht nicht überraschen, weil er mit der Vorstellung vertraut ist, dass universelle Computer prinzipiell alles simulieren können, sogar andere Computer“, meint Ko-Autor Dr. Toby Cubitt vom Fachbereich Computerwissenschaften des UCL. „Aber die Tatsache, dass ein ähnliches Phänomen auch in der Physik auftaucht, ist weit überraschender, und diese Erkenntnis hat bislang noch keinen Eingang in Anwendungen gefunden. In der wissenschaftlichen Gemeinschaft machen wir gerade die Erfahrung, dass Ideen aus der theoretischen Computerwissenschaft, untermauert von harten mathematischen Beweisen, unser Verständnis von der Physik vertiefen können. Es ist im Moment sehr spannend, an der Schnittstelle dieser beiden Gebiete zu arbeiten.”

Aber er betont: „Es handelt sich dabei keineswegs um das gut bekannte Phänomen der Universalität in der statistischen Physik. Universalität erklärt hier, warum sich verschiedene mikroskopische Modelle gleich benehmen. Unsere universellen Modelle sind gewissermaßen sogar das Gegenteil: Sie können ganz unterschiedliche Eigenschaften, sogar jede prinzipiell mögliche, annehmen.“ Und De las Cuevas ergänzt: „Spin-Modelle werden nicht nur in der Physik verwendet. Sie modellieren vielmehr viele andere komplexe Systeme, wie z.B. neuronale Netzwerke, Proteine oder soziale Netzwerke. All diese Systeme kann man vereinfacht mit Hilfe von Objekten (Neuronen, Aminosäuren oder Personen) beschreiben, die miteinander verbunden sind und sich gegenseitig beeinflussen.“ Die neuen Ergebnisse könnten es also ermöglichen, auch für diese Systeme ein tieferes Verständnis zu entwickeln.

Die Forscher beschäftigen sich nun mit der Frage, ob ihre theoretischen Ergebnisse in der Praxis angewandt werden können, um z.B. numerische Simulationen von Vielteilchensystemen zu verbessern, oder um neuartige komplexe Systeme zu konstruieren, von denen man bis jetzt gedacht hat, dass sie mit den zur Zeit zur Verfügung stehenden Techniken nicht herzustellen seien.

Die Arbeit wurden unterstützt vom EU-Projekt SIQS, der Royal Society (UK) sowie der John Templeton Foundation.

Originalveröffentlichung:
Gemma De las Cuevas and Toby S. Cubitt
Simple universal models capture all classical spin physics
Science, 11. März 2016

Kontakt:

Dr. Gemma de las Cuevas
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 343
E-Mail: gemma.delascuevas@mpq.mpg.de

Dr. Toby S. Cubitt
University College London
Dept. of Computer Science
66-72 Gower Street
London WC1E 6EA
United Kingdom
Telefon: +44 (0)20 3108 7158
E-Mail: T.Cubitt@cs.ucl.ac.uk

Dr. Olivia Meyer-Streng
Max-Planck-Institut für Quantenoptik
85748 Garching b. München
Telefon: +49 (0)89 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics