Diamant als Quantenspeicher

Der Quantenchip: In der Mitte ist der gewundene Mikrowellenresonator und der dunkle Diamant zu erkennen. F. Aigner / TU Wien<br>

Quantencomputer gehörten schon seit Jahren zu den großen Zielen der Wissenschaft. Wenn ein gewöhnlicher Computer eine Liste von Aufgaben zu erledigen hat, muss er sie mühsam nacheinander abarbeiten. Ein Quantencomputer könnte verschiedene Zustände gleichzeitig einnehmen – und dadurch verschiedene mögliche Lösungen eines Problems gleichzeitig ausprobieren. Einen wesentlichen Schritt Richtung Quantencomputer könnten nun Diamanten bringen. An der TU Wien gelang es, Mikrowellen an Quanten-Zustände eines Diamanten anzukoppeln. Die Ergebnisse dieses Forschungsprojektes wurden nun im angesehenen Fachjournal „Physical Review Letters“ veröffentlicht.

Unterschiedliche Quanten-Technologien in einem Chip

Schon lange sucht man nach passenden physikalischen Bausteinen für einen Quantencomputer – bisher jedoch ohne den gewünschten Erfolg. Zwar gab es schon verschiedene Ideen für Systeme, die auf quantenphysikalische Weise Information speichern, doch meist sind sie sehr fragil und instabil. Wenn etwas als Bauelement für einen Computer dienen soll, dann muss es sehr rasch umschalten lassen. Gleichzeitig muss es einen quantenphysikalischen Zustand ausreichend lange zuverlässig konservieren können, sodass genug Zeit besteht um damit Rechnungen durchzuführen. „Es gibt kein Quantensystem, das alle Anforderungen gleichzeitig erfüllt“, meint Johannes Majer vom Atominstitut der TU Wien. Mit seinem Forschungsteam koppelte er daher zwei völlig verschiedene Quantensysteme, um die Vorteile beider Seiten nutzen zu können: Mikrowellen und Diamanten.

Lichtteilchen und Diamanten

Auch bei herkömmlichen Computern gibt es einen Prozessor und einen Arbeitsspeicher. Der Prozessor führt schnelle Rechnungen durch, der Speicher soll sich die Ergebnisse möglichst dauerhaft merken. Ähnlich verhalten sich die beiden Quantensysteme zueinander, die auf dem Quanten-Chip an der TU Wien nun vereint wurden: Schnelle Rechenoperationen werden durch einen sogenannten Mikrowellen-Resonator ermöglicht. Sein Quantenzustand wird durch Lichtteilchen im Mikrowellen-Bereich bestimmt. Dieser Mikrowellen-Resonator wird an eine dünne Diamantschicht angekoppelt, in der Quantenzustände gespeichert werden können.

Fehler sind erwünscht

Während man für wertvollen Schmuck möglichst reine, makellose Diamanten sucht, benötigt man für die Quantenexperimente genau das Gegenteil: Hier sind Diamanten mit Fehlern gefragt. Wenn sich im regelmäßigen Kohlenstoff-Gitter des Diamanten nämlich Stichstoff-Atome einschleichen, dann wird der Diamant zwar beinahe schwarz, doch dafür kann er dann Quantenzustände stabil speichern. „Wir konnten zeigen, dass sich in unserem Chip Quanten-Zustände zwischen Mikrowellen und den Stickstoff-Zentren im Diamanten übertragen lassen“, erklärt der TU-Assistent Robert Amsüss. Je mehr Stickstoffatome bei dieser Übertragung beteiligt sind, umso stabiler „merkt“ sich der Diamant den eingespeicherten Quantenzustand.

Überraschenderweise konnte bei dem Experiment auch gezeigt werden, sich sogar im Drehimpuls der Atomkerne Quantenzustände speichern lassen. „Das könnte der erste Schritt zu einem Atomkern-Speicher sein“, mutmaßt Johannes Majer – doch zunächst soll der Diamant-Quantenchip in seiner jetzigen Form weiterentwickelt werden. Die nötigen Teilelemente sind nun vorhanden – jetzt geht es darum, sie für echte, stabile Rechenoperationen zu nützen.

Media Contact

Dr. Florian Aigner Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer