Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Detaillierte Struktur eines weit entfernten Quasars

01.06.2010
Erstes hochaufgelöstes Bild mit dem Niederfrequenz-Radioteleskop LOFAR

Das Max-Planck-Institut für Radioastronomie (Bonn) und das Max-Planck-Institut für Astrophysik (Garching) betreiben beide eine Station des europäischen LOFAR-Teleskops, das vom niederländischen Institut für Radioastronomie, ASTRON, koordiniert wird.

Durch die erstmalige Zusammenschaltung von drei deutschen LOFAR-Station mit den zentralen Stationen bei Exloo in den Niederlanden ist es einer internationalen Gruppe von Wissenschaftlern unter der Leitung von Olaf Wucknitz vom Argelander-Institut für Astronomie (AIfA) der Universität Bonn nun gelungen, das erste hochaufgelöste Bild eines weit entfernten Quasars bei Radiowellen im Meter-Bereich zu erhalten. Dieser Wellenlängenbereich war bisher für derart detailgenaue Messungen nicht zugänglich, da dafür Radioteleskope in großem gegenseitigen Abstand miteinander vernetzt werden müssen. Das erste Bild der detaillierten Struktur des Quasars 3C 196 zwischen 4 und 10 m Wellenlänge konnte bereits mit einem kleinen Teil der Stationen des kompletten LOFAR-Netzwerks erzielt werden; später wird es sich über einen ausgedehnten Bereich Europas erstrecken.

Nach Testmessungen mit einzelnen LOFAR-Antennen konnten erstmals acht Stationen des "LOw Frequency ARrays" (LOFAR) für eine gemeinsame Messung zusammengeschaltet werden. Dazu wurden fünf LOFAR-Stationen in den Niederlanden mit drei Stationen in Deutschland vernetzt, und zwar Effelsberg bei Bonn, Tautenburg bei Jena und Unterweilenbach bei München. Alle Antennen wurden auf den Quasar 3C 196 ausgerichtet, eine starke Radioquelle in einer Entfernung von mehreren Milliarden Lichtjahren. "Wir haben dieses Objekt für unsere ersten Testmessungen ausgewählt, weil wir seine Struktur aus hochaufgelösten Beobachtungen bei kürzeren Wellenlängen schon ganz gut kennen", sagt Olaf Wucknitz (AIfA). "Das Ziel dabei war zunächst nicht, etwas Neues zu finden, sondern die gleichen oder zumindest ähnliche Strukturen auch bei sehr langen Wellenlängen zu identifizieren, um zu bestätigen, dass das neue Instrument exzellent arbeitet. Ohne die deutschen Stationen sehen wir nur einen verschwommenen Fleck ohne jegliche Substrukturen. Sobald wir aber die langen Basislinien dazufügen, eröffnen sich alle Details."

Radiobeobachtungen des Himmels in dem von LOFAR abgedeckten Wellenlängenbereich sind nicht gänzlich neu. Tatsächlich haben die Pioniere der Radioastronomie in den 1930er Jahren genau in diesem Bereich angefangen. Sie waren jedoch nur in der Lage, ziemlich grobe Himmelskarten zu erstellen und Positionen sowie Strahlungsintensitäten einzelner Objekte festzulegen. "Wir kehren jetzt zu einem lange vernachlässigten Wellenlängenbereich zurück", sagt Michael Garrett, Generaldirektor des Forschungsinstituts ASTRON (Niederlande), das für das internationale LOFAR-Projekt verantwortlich zeichnet. "Aber jetzt sind wir in der Lage, viel schwächere Objekte nachzuweisen und, was noch wichtiger ist, feine Details aufzulösen. Das eröffnet eine Reihe von neuen Möglichkeiten für die Forschung."

"Die hohe Auflösung und große Empfindlichkeit von LOFAR bedeuten, dass wir wirklich Neuland betreten; die Analyse der Daten war auch entsprechend aufwendig", fügt Olaf Wucknitz hinzu. "Wir mussten dazu eine Reihe völlig neuer Analysetechniken entwickeln. Trotzdem ist die Erstellung der Bilder bemerkenswert gut gelungen. Die Qualität der Daten ist erstaunlich." Der nächste Schritt für Wucknitz wird sein, LOFAR zur Untersuchung sogenannter Gravitationslinsen zu nutzen, bei denen das Licht weit entfernter Objekte durch große Massenansammlungen verzerrt wird. Eine hohe Auflösung ist erforderlich, um einzelne Strukturen zu unterscheiden. Das wäre ohne die internationalen LOFAR-Stationen nicht möglich.

Die Winkelauflösung eines Netzwerks von Radioteleskopen, d.h., die Ausdehnung der kleinsten Strukturen, die aufgelöst und voneinander unterschieden werden können, hängt direkt vom Abstand zwischen den einzelnen Teleskopen ab. Je größer die Basislinien in Bezug auf die beobachtete Wellenlänge der Strahlung, desto besser die erreichte Auflösung. Zur Zeit tragen die deutschen LOFAR-Stationen die ersten großen Basislinien zum gesamten Netzwerk bei und vergrößern die Auflösung um einen Faktor 10 gegenüber den niederländischen Stationen alleine.

"Wir möchten LOFAR dazu verwenden, nach Signalen aus der Frühzeit des Universums zu suchen", sagt Benedetta Ciardi vom Max-Planck-Institut für Astrophysik (MPA) in Garching. "Da ich selbst aus der theoretischen Astrophysik komme, hätte ich nie gedacht, dass ich mal ein Radiobild so aufregend finden könnte. Aber die neuen Ergebnisse sind schon faszinierend."

Eine weitere Verbesserung sollte schon bald durch Beobachtungen bei etwas kürzeren Wellenlängen erreicht werden, durch die die Auflösung nochmals um einen Faktor 4 gesteigert werden kann. Dazu wird sich die Qualität der Abbildungen durch die Hinzunahme weiterer LOFAR-Stationen deutlich verbessern. Das Bild des Quasars 3C 196 ist nur ein erster, wenn auch wichtiger Schritt.

"Die Bildqualität des fertigen Netzwerks wird sehr stark von der Gleichmäßigkeit abhängen, mit der große Gebiete Europas mit einzelnen LOFAR-Stationen überdeckt werden können", sagt Anton Zensus, Direktor am Max-Planck-Institut für Radioastronomie (MPIfR), der Leiter der VLBI-Forschungsgruppe am Institut. "Die deutschen Stationen bilden bereits einen unschätzbaren Beitrag zu dem internationalen Netzwerk. Was wir aber noch gut brauchen könntne, wäre eine Station in Norddeutschland, mit der wir die Lücke zwischen unseren jetzigen Stationen und denen unserer holländischen Freunde schließen könnten. Das würde die Bildqualität nochmals erheblich verbessern."

Bemerkungen:

Das "International LOFAR telescope" (ILT) wurde hauptsächlich von ASTRON konzipiert, dem Niederländischen Institut für Radioastronomie, in Zusammenarbeit mit einer Reihe von internationalen Partnern. Die LOFAR-Station in Effelsberg wird vom MPIfR betrieben, die Station in Unterweilenbach vom MPA und diejeninge in Tautenburg von der Landessternwarte Tautenburg. Die deutschen LOFAR-Partner haben sich zu dem GLOW, dem "German LOng Wavelength" Konsortium zusammengeschlossen.

In seiner endgültigen Form wird sich das internationale LOFAR-Teleskop aus mindestens 36 Einzelstationen in den Niederlanden und acht Stationen in Deutschland, Frankreich, Großbritannien und Schweden zusammensetzen. Zur Zeit sind 22 Stationen in Betrieb und weitere im Bau, in Bornim bei Potsdam, in Chilbolton (UK), Onsala (Sweden) und Nançay (France). Jede Station besteht aus Hunderten von Dipolantennen, die elektronisch miteinander verbunden ein riesiges Radioteleskop bilden, mit der Fläche von halb Europa. Durch die neuartige Technik von LOFAR ist es nicht mehr erforderlich, die Radioantennen auf die jeweils interessierenden Objekte auszurichten. Statt dessen ist es sogar möglich, unterschiedliche Gebiete des Himmels gleichzeitig zu erfassen.

Die Beobachtungsdaten von allen LOFAR-Stationen werden über schnelle Glasfaserleitungen der Wissenschaftsnetzwerke in ein Computerzentrum in Groningen im Norden der Niederlande übertragen. Dort werden sie in einem Supercomputer (IBM BlueGene) verarbeitet und für die endgültige Auswertung vorbereitet, die entweder dort oder in einem der beteiligten Institute (in diesem Fall im Argelander-Institut für Astronomie in Bonn) stattfinden kann.

Zusätzliche Informationen:

Argelander-Institut für Astronomie (AIfA), Bonn.
http://www.astro.uni-bonn.de/german/index.php
Max-Planck-Institut für Radioastronomie. (MPIfR), Bonn.
http://www.mpifr-bonn.mpg.de/
German LOng Wavelength (GLOW).
http://www.mpifr-bonn.mpg.de/div/lofar/glow.html
Netherlands Institute for Radio Astronomy (ASTRON).
http://www.astron.nl/
LOw Frequency ARray (LOFAR), Internationale Web-Seite.
http://www.lofar.org/
LOFAR am MPA
http://lofar.mpa-garching.mpg.de/
Contact
Dr. Hannelore Hämmerle
Press Officer
Max Planck Institute for Astrophysics
and Max Planck Institute for extraterrestrial Physics
Phone: +49 89 30000-3980
E-Mail: hhaemmerle@mpa-garching.mpg.de

Dr. Benedetta Ciardi
Max Planck Institute for Astrophysics
Phone: +49 89 30000-2018
E-Mail: ciardi@mpa-garching.mpg.de

Dr. Hannelore Hämmerle | Max Planck Institute for Astroph
Weitere Informationen:
http://www.mpa-garching.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spintronik: Forscher zeigen, wie sich nichtmagnetische Materialien magnetisch machen lassen
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Erster radioastronomischer Nachweis eines extrasolaren Planetensystems um einen Hauptreihenstern
05.08.2020 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

Eine entscheidende Ergänzung zum Stanzen von Kontakten erarbeiteten Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT. Die Aachener haben im Rahmen des EFRE-Forschungsprojekts ScanCut zusammen mit Industriepartnern aus Nordrhein-Westfalen ein hybrides Fertigungsverfahren zum Laserschneiden von dünnwandigen Metallbändern entwickelt, wodurch auch winzige Details von Kontaktteilen umweltfreundlich, hochpräzise und effizient gefertigt werden können.

Sie sind unscheinbar und winzig, trotzdem steht und fällt der Einsatz eines modernen Fahrzeugs mit ihnen: Die Rede ist von mehreren Tausend Steckverbindern im...

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationstage 2020 – digital

06.08.2020 | Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Türsteher im Gehirn

06.08.2020 | Biowissenschaften Chemie

Kognitive Energiesysteme: Neues Kompetenzzentrum sucht Partner aus Wissenschaft und Wirtschaft

06.08.2020 | Energie und Elektrotechnik

Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

06.08.2020 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics