Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Anti-Laser mit dem Zufallsprinzip

05.03.2019

Das Konzept des Lasers lässt sich umkehren: Aus der perfekten Lichtquelle wird dann der perfekte Licht-Absorber. An der TU Wien konnte man nun zeigen, wie die Konstruktion dieses Anti-Lasers auf praxistaugliche Weise gelingt.

Der Laser ist die perfekte Lichtquelle: Man muss ihm lediglich Energie zuführen und er erzeugt Licht einer ganz bestimmten, exakt definierten Farbe. Es ist allerdings auch möglich das Gegenteil herzustellen – nämlich Objekte, die Licht einer ganz bestimmten Farbe perfekt verschlucken und die Energie praktisch vollständig absorbieren.


Experimenteller Aufbau des Anti-Lasers nach dem Zufallsprinzip: Im Inneren eines Wellenleiters befindet sich ein ungeordnetes Medium bestehend aus zufällig positionierten Teflon-Zylindern.

TU Wien


Das Team von der TU Wien: Kevin Pichler, Andre Brandstötter, Stefan Rotter und Matthias Kühmayer (v.l.n.r.)

TU Wien

An der TU Wien wurde nun eine Methode entwickelt, diesen Effekt nutzbar zu machen, und zwar sogar in extrem komplizierten Systemen, in denen Lichtwellen unregelmäßig und zufällig in alle Richtungen gestreut werden.

Die Methode hat das Team der TU Wien mit Hilfe von Computersimulationen entwickelt und in Zusammenarbeit mit der Universität Nizza auch im Experiment bestätigt. Das eröffnet neue Möglichkeiten für alle technischen Disziplinen, die mit Wellenphänomenen zu tun haben. Die neue Methode wurde nun im Fachjournal „Nature“ publiziert.

Zufällige Strukturen, die Wellen verschlucken

„Im täglichen Leben haben wir es überall mit Wellen zu tun, die auf komplizierte Weise gestreut werden – denken Sie etwa an ein Mobilfunksignal, das mehrfach reflektiert wird, bevor es an Ihrem Handy ankommt“, sagt Prof. Stefan Rotter vom Institut für Theoretische Physik der TU Wien.

„Diese Vielfach-Streuung macht man sich in sogenannten Zufalls-Lasern zunutze. Solche exotischen Laser haben einen komplizierten, zufälligen inneren Aufbau und strahlen ein ganz bestimmtes, individuelles Lichtmuster aus, wenn man sie mit Energie versorgt.“

In mathematischen Analysen und Computersimulationen konnte Rotters Team zeigen, dass sich dieser Vorgang auch zeitlich umkehren lässt. Anstatt einer Lichtquelle, die abhängig von ihrem zufälligen Innenleben eine bestimmte Welle aussendet, kann man den perfekten Absorber bauen, der spezifisch für seine innere Struktur eine bestimmte Welle völlig verschluckt, ohne auch nur einen Teil davon wieder nach außen abzugeben.

Vorstellen kann man sich dies so, als würde man einen Laser, der Licht aussendet, mit einer Filmkamera aufnehmen und diesen Film dann rückwärts abspielen.

„Wegen dieser Zeitumkehr-Analogie zu einem Laser bezeichnet man diese Art von Absorber als Anti-Laser“, sagt Stefan Rotter. „Bisher wurden solche Anti-Laser nur in eindimensionalen Strukturen realisiert, auf die man Licht aus gegenüberliegenden Richtungen lenkte. Unser Zugang ist viel allgemeiner. Wir konnten zeigen, dass selbst beliebig komplizierte Strukturen in mehreren Dimensionen eine maßgeschneiderte Welle perfekt absorbieren können. Damit öffnen wir dieses Konzept für breite Anwendungsmöglichkeiten.“

Der perfekte Wellen-Absorber

Die These der Wiener Forschungsgruppe: Für jedes Objekt, das Wellen ausreichend stark absorbiert, lässt sich eine bestimmte Wellenform finden, die von diesem Objekt perfekt verschluckt wird. „Es wäre allerdings falsch sich vorzustellen, dass der Absorber einfach nur stark genug gemacht werden muss, sodass er einfach jede einfallende Welle aufnimmt“, sagt Stefan Rotter.

„Vielmehr handelt es sich um einen komplexen Streuprozess, bei dem sich die einfallende Welle in viele Teilwellen aufspaltet, die sich dann derart miteinander überlagern, dass keine der Teilwellen am Ende nach außen dringen kann.“ Der Absorber, der in einen solchen Antilaser eingebaut ist, muss gar nicht besonders stark absorbieren, es kann sich zum Beispiel um eine einfache kleine Antenne handeln, die von elektromagnetischen Wellen angeregt wird.

Um die Berechnungen zu testen, arbeitete das Team mit der Universität Nizza zusammen. Kevin Pichler, der Erstautor der Nature-Publikation, der derzeit im Team von Stefan Rotter an seiner Dissertation arbeitet, verbrachte mehrere Wochen bei Prof. Ulrich Kuhl an der Universität Nizza, um die Theorie anhand eines Mikrowellen-Experiments direkt in die Praxis umzusetzen.

„Eigentlich ist es etwas ungewöhnlich, dass man als Theoretiker auch das Experiment selbst durchführt“, sagt Kevin Pichler. „Für mich war es jedoch besonders spannend, dieses Projekt vom theoretischen Konzept bis hin zur Umsetzung im Labor aktiv mitgestalten zu können.“

Der im Labor gebaute „Zufalls-Anti-Laser“ („Random Anti-Laser“) besteht aus einer Mikrowellenkammer mit einer zentralen Absorber-Antenne, umgeben von zufällig angeordneten Zylindern aus Teflon. Ähnlich wie Steine in einer Wasserpfütze, an denen Wasserwellen abgelenkt und reflektiert werden, können diese Zylinder Mikrowellen streuen und ein kompliziertes Wellenmuster erzeugen.

„Zuerst sendet man von außen Mikrowellen auf dieses System und misst wie diese wieder zurückkommen“, erklärt Kevin Pichler. „Mit diesem Wissen lässt sich die Struktur vollständig charakterisieren. Daraus lässt sich dann eindeutig jene Welle berechnen, die von der zentralen Antenne bei der richtigen Absorptionsstärke vollständig verschluckt wird. Bei der Umsetzung dieses Protokolls im Experiment finden wir tatsächlich eine Absorption von ca. 99,8 % des einfallenden Signals.“

Die Anti-Laser-Technologie steht erst am Anfang, aber Anwendungsmöglichkeiten ergeben sich überall, wo man es mit komplizierter Wellenstreuung zu tun hat. „Stellen wir uns zum Beispiel vor, man könnte ein Handy-Signal genau so anpassen, dass es perfekt von der Antenne in einem bestimmten Handy absorbiert wird “, sagt Stefan Rotter. „Auch in der Medizin hat man es oft mit der Aufgabe zu tun, Wellenenergie möglichst perfekt an einen ganz bestimmten Punkt zu transportieren – etwa Stoßwellen, die einen Nierenstein zertrümmern.“

Wissenschaftliche Ansprechpartner:

Prof. Stefan Rotter
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
stefan.rotter@tuwien.ac.at

Dipl.-Ing. Kevin Pichler
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13644
kevin.pichler@tuwien.ac.at

Originalpublikation:

K. Pichler et al., Random anti-lasing through coherent perfect absorption in a disordered medium, Nature (2019), DOI: 10.1038/s41586-019-0971-3

Dr. Florian Aigner | Technische Universität Wien

Weitere Berichte zu: Absorber Antenne Computersimulationen Laser Lichtquelle Mikrowellen Welle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Balance aus Ordnung und Unordnung ermöglicht hocheffiziente Solarzellen
17.07.2019 | Universität Regensburg

nachricht Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet
15.07.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Neues Verfahren für den Kampf gegen Viren

Forschende der Fraunhofer-Gesellschaft in Sulzbach und Regensburg arbeiten im Projekt ViroSens gemeinsam mit Industriepartnern an einem neuartigen Analyseverfahren, um die Wirksamkeitsprüfung von Impfstoffen effizienter und kostengünstiger zu machen. Die Methode kombiniert elektrochemische Sensorik und Biotechnologie und ermöglicht erstmals eine komplett automatisierte Analyse des Infektionszustands von Testzellen.

Die Meisten sehen Impfungen als einen Segen der modernen Medizin, da sie vor gefährlichen Viruserkrankungen schützen. Doch bevor es ein Impfstoff in die...

Im Focus: Großes Potenzial: Aktoren und Sensoren mit 3D-Druck in komplexe Bauteile integrieren

Der additiven Fertigung wird eine große Zukunft vorhergesagt. So lassen sich mit Hilfe des 3D-Drucks beispielsweise die Anzahl der Komponenten komplexer, individualisierter Baugruppen stark reduzieren und viele Funktionen direkt in ein Bauteil integrieren. Das vereinfacht den Herstellungsprozess und verringert den notwendigen Bauraum. Um diese Vorteile auch für mechatronische Systeme zu nutzen, forschen Wissenschaftler im Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF in mehreren Projekten an der additiven Fertigung von integrierten Aktoren und Sensoren. Diese können in Leichtbaustrukturen störende oder schädigende Vibrationen mindern sowie Strukturen überwachen.

Aufgrund der Ergebnisse ihrer Forschungsprojekte sehen die Wissenschaftler des Fraunhofer LBF großes Potenzial für die additive Fertigung mechatronischer...

Im Focus: Megakaryozyten als „Türsteher“ und Regulatoren der Zellmigration im Knochenmark

In einer neuen Studie zeigen Wissenschaftler der Universität Würzburg und des Universitätsklinikums Würzburg, dass Megakaryozyten als eine Art „Türsteher“ auftreten und so die Eigenschaften von Knochenmarksnischen und die Dynamik der Zellmigration verändern. Die Studie wurde im Juli im Journal „Haematologica“ veröffentlicht.

Die Hämatopoese ist der Prozess der Bildung von Blutzellen, der überwiegend im Knochenmark auftritt. Das Knochenmark produziert alle Arten von Blutkörperchen:...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kosmos-Konferenz: Navigating the Sustainability Transformation in the 21st Century

17.07.2019 | Veranstaltungen

Auswandern auf Terra-2?

15.07.2019 | Veranstaltungen

Hallo Herz! Wie kommuniziert welches Organ mit dem Herzen?

12.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Trickreiche Transportmoleküle

18.07.2019 | Biowissenschaften Chemie

Leukämie: Wie Krebszellen einen Gefahrendetektor unterdrücken

18.07.2019 | Biowissenschaften Chemie

Wie verteilen sich Pollen in der Luft?

18.07.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics