Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Phänomen der Supraleitung auf der Spur

22.12.2017

Fermionische Paarbildung bei hohen Temperaturen: Heidelberger Physikern gelingt der Nachweis eines exotischen Materiezustands

Mithilfe ultrakalter Atome haben Wissenschaftler der Universität Heidelberg einen exotischen Materiezustand nachgewiesen. Dabei bilden die zugrundeliegenden Teilchen Paare, wenn ihre Bewegung auf zwei Dimensionen beschränkt wird. Diese Erkenntnisse aus der Quantenphysik könnten wichtige Hinweise liefern, um Phänomene der Supraleitung besser zu verstehen. Die Forschungsergebnisse wurden in der Fachzeitschrift „Science“ veröffentlicht.


In einem bereits bekannten und gut verstandenen Szenario wird die Paarbildung allein durch die Attraktion zwischen zwei Fermionen verursacht (grüne Verbindungslinien). Das Heidelberger Forschungsteam hat jedoch herausgefunden, dass bei starken Wechselwirkungen zwischen den Fermionen eine andere Art der Paarbildung stattfindet, die stark von der Dichte des umliegenden Mediums abhängt (graue Wolken). Das deutet darauf hin, dass in diesem Zustand jedes Teilchen nicht nur mit einem anderen Teilchen gepaart ist, sondern dass es zusätzlich auch noch weitere Korrelationen mit anderen Teilchen in der Umgebung gibt.

Abbildung: Puneet Murthy

Supraleiter sind Materialien, bei denen Strom ohne jeglichen Widerstand fließen kann, wenn eine sogenannte Sprungtemperatur unterschritten wird. Die technologisch besonders interessante Klasse der Hochtemperatursupraleiter mit ungewöhnlich hohen Sprungtemperaturen ist jedoch noch nicht vollständig verstanden. Erwiesen ist allerdings, dass eine bestimmte Sorte von Teilchen – die Fermionen – notwendigerweise Paare bilden müssen, um supraleitend werden zu können.

Die Forschung hat außerdem gezeigt, dass viele Materialien, die supraleitende Eigenschaften bei vergleichsweise hohen Temperaturen aufweisen, eine geschichtete Struktur haben. „Dies bedeutet, dass die Bewegung der Elektronen in derartigen Quantensystemen effektiv auf zwei Dimensionen beschränkt ist“, so Projektleiter Prof. Dr. Selim Jochim vom Physikalischen Institut der Universität Heidelberg. „Offen war bisher jedoch die Frage, wie die Paarbildung im Verbund mit der Zweidimensionalität zu höheren Sprungtemperaturen führen kann.“

Um dieser Frage auf den Grund zu gehen, wurden am Zentrum für Quantendynamik Experimente mit ultrakalten Atomen durchgeführt. Diese Atome wurden dabei in zweidimensionalen, durch einen fokussierten Laserstrahl erzeugten Fallen gefangen.

„In Festkörpern, wie etwa Kupferoxiden, gibt es viele konkurrierende Effekte und zudem Unreinheiten, die diese Materialien schwer beschreibbar machen. Daher nutzen wir ultrakalte Atome, um das Verhalten von Elektronen in einem Festkörper zu simulieren. Wir sind damit in der Lage, sehr reine Proben zu erzeugen, und haben volle Kontrolle über die entscheidenden Parameter des Systems“, erklärt Puneet Murthy, Doktorand am Zentrum für Quantendynamik der Universität Heidelberg und einer der Hauptautoren der Veröffentlichung.

Zum Einsatz kam bei diesen Experimenten eine Technik, die unter dem Namen Radiofrequenzspektroskopie bekannt ist. Damit untersuchen die Wissenschaftler, wie Atome auf einen Radiofrequenzpuls ansprechen. Auf diese Weise konnten sie genau feststellen, wann und in welcher Form es zu einer Paarbildung kam. Die Messungen wurden zudem für verschiedene Wechselwirkungsstärken zwischen den Fermionen durchgeführt.

Bei diesen Untersuchungen stießen die Forscher auf einen exotischen Materiezustand. Aus der Theorie ist bekannt, dass schwach wechselwirkende Fermionen bei derselben Temperatur Paare bilden sollten, bei der sie auch supraleitend werden. Als jedoch die Wissenschaftler die Stärke der Wechselwirkungen in den Experimenten erhöhten, beobachteten sie, dass bei starker Wechselwirkung die Paarbildung bereits bei einem Vielfachen der Sprungtemperatur erfolgte.

„Langfristiges Ziel unserer Forschung ist es, ein tieferes Verständnis dieser Phänomene zu erlangen. Dafür starten wir mit kleinen Systemen, die wir Atom für Atom zusammensetzen“, sagt Selim Jochim. An den Forschungsarbeiten waren auch Wissenschaftler des Instituts für Theoretische Physik sowie Forscher der Simon Fraser University in Vancouver (Kanada) beteiligt.

Originalpublikation:
P. A. Murthy, M. Neidig, R. Klemt, L. Bayha, I. Boettcher, T. Enss, M. Holten, G. Zuern, P. Preiss, S. Jochim: High Temperature Pairing in a strongly interacting two-dimensional Fermi gas. Science (published online on 21 December 2017), doi: 10.1126/science.aan5950

Kontakt:
Prof. Dr. Selim Jochim
Physikalisches Institut
Zentrum für Quantendynamik
Telefon (06221) 54-19472
jochim@uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://ultracold.physi.uni-heidelberg.de/

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lichtpulse bewegen Spins von Atom zu Atom
17.02.2020 | Forschungsverbund Berlin e.V.

nachricht Physik des Lebens - Die Logistik des Molekül-Puzzles
17.02.2020 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics