Dem Mysterium der verschränkten Lichtteilchen auf der Spur

Dr. Stefan Lerch justiert die Quelle der energie-verschränkten Photonen, die im Experiment genutzt wurde, um den Übergang von Quantenkorrelationen zu klassischen Korrelationen aufzuzeigen. © André Stefanov, Universität Bern

Quantentechnologien bergen das grosse Potenzial, die Grenzen der gegenwärtigen klassischen Technologien zu überschreiten, indem sie sich Quantenphänomene wie die «verschränkten Teilchen» zunutze machen. Quantentechnologien werden in verschiedenen Anwendungen eingesetzt, etwa in Quantencomputern oder in der Quantensensorik und -metrologie, die Bildgebungsverfahren mit extrem hoher Auflösung oder eine viel genauere Bestimmung der Eigenschaften von Atomen und Molekülen ermöglicht.

Verschränkte Lichtteilchen

Die Verschränkung ist eines der eindrucksvollsten quantenphysikalischen Phänomene. Sie beschreibt die Eigenschaft zweier Partikel, sich nicht wie zwei unabhängige Objekte, sondern wie ein einziges physikalisches Objekt zu verhalten. Die Verschränkung ist nicht räumlich zu verstehen: Verschränkte Teilchen korrelieren bezüglich ihrer Eigenschaften miteinander.

Das bedeutet, dass wenn man die Eigenschaften des einen Teilchens verändert, sich das andere Teilchen zeitgleich entsprechend mitverändert, egal wo sich es sich befindet. Bei Lichtteilchen (Photonen) kann man eine solche Verschränkung erzeugen, wenn man ein einzelnes Teilchen in einer Laseranordnung mit einem speziellen Kristall in zwei Photonen aufspaltet.

In der Optik sind verschränkte Photonen ein Hauptbestandteil bei der Entwicklung von neuen Quanten-Messverfahren. Sie können genutzt werden, weil die Messkapazität eines verschränkten Photonenpaars grösser ist als die von zwei einzelnen Photonen. Die Quantenverschränkung führt allerdings dazu, dass Zusammenhänge zwischen Messungen an den Photonenpaaren beobachtet werden, die nur quantenmechanisch und nicht mit Konzepten der klassischen Physik erklärt werden können.

Bisher gab es keine Methode, um Photonenpaare zu bilden, die keine quantenmechanischen, sondern nur klassische Energie-Korrelationen aufweisen. Einem Forschungsteam des Instituts für Angewandte Physik der Universität Bern gelang es nun in einem Experiment, die beobachteten Korrelationen von Photonenpaare von rein quantenmechanisch zu vollständig klassisch umzuwandeln.

Dieser Übergang stellt ein Novum dar, da Quanten- und klassische Korrelationen nur schwierig in Einklang zu bringen sind. Der Übergang konnten die Forschenden in einem Experiment mit einem neuem Verfahren aufzeigen, in dem sie die Verschränkung der Energien von zwei Photonen kontrollieren konnten. Die Ergebnisse wurden im Fachmagazin Nature Communications Physics veröffentlicht.

Die Photonen schütteln

Die Verschränkung von Photonen ist eine sogenannte «Energie-Zeit-Verschränkung», da die Photonen sowohl bezüglich der sogenannten Emissionszeit als auch der Energie korrelieren. Beide Korrelationen können experimentell beobachtet werden und lassen Rückschlüsse auf die jeweils andere zu.

Da die Forschenden aber nur die Zeit-Korrelation des Photonenpaars ausmachen wollten, mussten sie in die Trickkiste greifen: «Um solche Paare zu bilden, haben wir die Photonen sozusagen zufallsmässig geschüttelt», erklärt Dr. Stefan Lerch, Erstautor der Studie. Dadurch lösten die Forschenden eine Störung aus. «Je grösser die Störung, desto weniger verhielten sich die Photonen quantenmechanisch.»

Um den Quantenzustand der Photonen zu verändern, haben die Forschenden Techniken verwendet, die sonst bei der Bildung von ultrakurzen Laserimpulsen genutzt werden. «Dieses Knowhow, das an der Universität Bern im Rahmen des NCCR MUST generiert wurde, war grundlegend um eine solch präzise Kontrolle zu erreichen», sagt Studien-Mitautor Prof. Dr. André Stefanov.

Die vielversprechendste Anwendung von energie-zeit-verschränkten Photonen ist die Spektroskopie, eine physikalische Methode zur Untersuchung der Eigenschaften von Molekülen mit Licht. «Die verschränkte Photonen-Spektroskopie wird die optische Spektroskopie revolutionieren», sagt André Stefanov. Jedoch muss sie erst noch experimentell bewiesen werden. Die Erkenntnisse der Berner Forschenden sind ein wichtiger Schritt auf diesem Weg. «Ich bin überzeugt, dass ein solcher Aufbau grundlegend ist für zukünftige Quanten-Spektroskopie-Experimente», fügt André Stefanov an.

Publikation:
Stefan Lerch and André Stefanov: Observing the transition from quantum to classical energy correlations with photon pairs, Nature Communications Physics, 13 June 2018, in press.

Kontakt:
Prof. André Stefanov
Institut für Angewandte Physik, Universität Bern
Telefon: +41 31 631 89 37 (erreichbar am Donnerstag, 14. Juni, nachmittags)
Email: andre.stefanov@iap.unibe.ch

http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2018/medie…

Media Contact

Nathalie Matter Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer