Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Deep Learning als neues Werkzeug in der Schwerionenphysik

22.01.2018

Mit verbesserten neuronalen Netzen gewinnen Physiker der Goethe-Universität Informationen aus der Datenflut von Schwerionenkollisionen. Sie suchen damit nach Hinweisen für einen frühen Zustand der Materie kurz nach dem Urknall: Das Quark-Gluon-Plasma.

Deep Learning ist eine Methode des Maschinenlernens, bei der Computermodelle eigenständig mit Beispielen lernen. Wie Wissenschaftler der Goethe-Universität und des Frankfurt Institute for Advanced Studies (FIAS) in der aktuellen Ausgabe von „Nature Communications“ zeigen, lässt sie sich verwenden, um Daten aus Schwerionenkollisionen zu klassifizieren.


Datenanalyse mit Deep Learning

Grafik: FIAS

Ihr Ziel ist es, die Veränderungen in der Teilchenmaterie direkt aus den experimentellen Daten zu bestimmen und damit künftig mehr über die Zustände im frühen Universum und in Neutronensternkollisionen zu erfahren.

„Im Frühjahr 2016 gewann Googles AlphaGo Computer mittels künstlicher Intelligenz gegen einen Profi-Spieler des Strategiespiels Go. Das hat uns so sehr begeistert, dass wir herausfinden wollten, ob auch wir einen Computer so trainieren könnten, dass er uns die Zustandsgleichungen von Teilchenkollisionen in einem Schwerionenphysik-Experiment besser vorhersagen kann“, erklärt Dr. Long-Gang Pang, Erstautor der Studie und ehemals Postdoktorand des FIAS. Seit einigen Monaten arbeitet er an der University of California in Berkeley, USA.

Gegenstand seiner Forschung zusammen mit Dr. Kai Zhou und Dr. Nan Su aus den Arbeitsgruppen von Prof. Hannah Petersen und Prof. Horst Stöcker und Prof. Wang Xin-Nian (Berkeley, USA) ist die Untersuchung und Vorhersage von Experimenten, bei denen Teilchen mit nahezu Lichtgeschwindigkeit zusammenprallen.

Zu den größten noch offenen Fragen gehört, ob dabei ein spezieller Materiezustand, das Quark-Gluon-Plasma, erzeugt wird, und wie der Übergang zu normaler Materie aussieht. Bisher können einige wichtige Informationen, wie der Druck oder der Übergang zwischen den Zuständen, ‎nicht direkt aus den experimentellen Daten abgelesen werden. Hierfür braucht man komplexe Computermodelle und riesige Rechnerleistungen. Gerade hier kann Deep Learning Prozesse effizienter gestalten und die Datenanalyse deutlich verbessern.

Der Begriff des „Deep Learning“ kam im Laufe der letzten Jahre immer wieder im Zusammenhang mit künstlicher Intelligenz, „Big Data“ oder modernen Analysealgorithmen auf. Inzwischen steckt Deep Learning hinter den meisten Spracherkennungssystemen in Smartphones oder intelligenten Haushaltshelfern, aber auch in der Technologie des autonomen Fahrens.

Man versteht darunter eine Methode des Maschinenlernens, bei der Computermodelle eigenständig lernen, Klassifizierungen vorzunehmen. Dazu nehmen sie große Mengen an bekannten Bildern, Text, oder Geräuschen in eine Datenbank auf und vergleichen sie dann mit unbekannten Daten. Die Systeme können sogar aus ihren Fehlern lernen und einige Probleme inuzwischen effizienter lösen als Menschen, z.B. das Bestimmen von Objekten auf Bildern.

Am interdisziplinären FIAS arbeiten Neurowissenschaftler schon lange daran, die Prozesse die in unserem Gehirn stattfinden, zu abstrahieren, um daraus künstliche neuronale Netze zu entwickeln. Dazu gehören auch Convolutional Neural Networks (neuronale Faltungsnetzwerke, kurz CNN), welche die Basis für Deep Learning darstellen. Durch die Arbeit der Kollegen am eigenen Institut inspiriert, haben Long-Gang Pang, Kai Zhou und Nan Su ein CNN mit über 20.000 Bildern von simulierten Schwerionenkollisionen trainiert und erfolgreich gezeigt, dass es in Zukunft möglich sein wird, die Methode zu verwenden, um die Phasenstruktur und andere Ergebnisse direkt aus den experimentellen Daten abzulesen.

Damit die Wissenschaftler ihre Methode auch direkt bei experimentellen Daten anwenden können, liegt noch etwas Arbeit vor ihnen, hierzu müssen sie u.a. noch die Feinheiten der Detektoren in ihr Modell mit aufnehmen.

Publikation:
Long-Gang Pang, Kai Zhou, Nan Su, Hannah Petersen, Horst Stöcker & Xin-Nian Wang: “An equation-of-state-meter of quantum chromodynamics transition from deep learning” Nature Communications https://www.nature.com/articles/s41467-017-02726-3, DOI : 10.1038/s41467-017-02726-3

Information: Prof. Dr. Hannah Petersen, Institut für Theoretische Physik, Fachbereich 13, sowie Frankfurt Institute for Advanced Studies (FIAS), Campus Riedberg, Tel.: (069) 798 47652, petersen@fias.uni-frankfurt.de

Aktuelle Nachrichten aus Wissenschaft, Lehre und Gesellschaft in GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 mit privaten Mitteln überwiegend jüdischer Stifter gegründet, hat sie seitdem Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Medizin, Quantenphysik, Hirnforschung und Arbeitsrecht.

Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein hohes Maß an Selbstverantwortung. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geistes- und Sozialwissenschaften. Zusammen mit der Technischen Universität Darmstadt und der Universität Mainz ist sie Partner der länderübergreifenden strategischen Universitätsallianz Rhein-Main. Internet: www.uni-frankfurt.de

Herausgeberin: Die Präsidentin der Goethe-Universität Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation, Abteilung PR & Kommunikation, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: (069) 798-12498, Fax: (069) 798-763 12531, hardy@pvw.uni-frankfurt.de.

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Tanz mit dem Feind
12.12.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Bose-Einstein-Kondensate können Gravitationswellen derzeit wohl kaum nachweisen
12.12.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

ICTM Conference 2019 in Aachen: Digitalisierung als Zukunftstrend für den Turbomaschinenbau

12.12.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Biofilme generieren ihre Nährstoffversorgung selbst

12.12.2018 | Interdisziplinäre Forschung

Tanz mit dem Feind

12.12.2018 | Physik Astronomie

Künstliches Perlmutt nach Mass

12.12.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics