Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

14.02.2018

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht. Die Kombination von Licht aus den Hauptteleskopen macht das VLT im Hinblick auf die lichtsammelnde Fläche zum größten optischen Teleskop überhaupt.


Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht. Die Kombination von Licht aus den Hauptteleskopen macht das VLT im Hinblick auf die lichtsammelnde Fläche zum größten optischen Teleskop überhaupt. Diese Abbildung zeigt in stark vereinfachter Form, wie das von allen vier VLT-Hauptteleskopen gesammelte Licht im ESPRESSO-Instrument unter der VLT-Plattform kombiniert wird.

Herkunftsnachweis: ESO/L. Calçada

Eines der ursprünglichen Designziele des Very Large Telescope (VLT) der ESO war die Zusammenarbeit der vier Hauptteleskope (engl. Unit Telescopes, kurz UTs), um ein virtuelles Riesenteleskop zu schaffen. Mit dem ersten Licht des ESPRESSO-Spektrografen im Vier-Hauptteleskope-Modus des VLT wurde dieser Meilenstein nun erreicht [1].

Nach umfangreichen Vorbereitungen durch das ESPRESSO-Konsortium (unter der Leitung des Astronomischen Observatoriums der Universität Genf unter Beteiligung von Forschungszentren aus Italien, Portugal, Spanien und der Schweiz) und ESO-Mitarbeitern startete ESO-Generaldirektor Xavier Barcons diese historische astronomische Beobachtung per Knopfdruck im Kontrollraum.

Der ESPRESSO-Instrumentenwissenschaftler Gaspare Lo Curto von der ESO erklärt die historische Bedeutung dieses Ereignisses: "Die ESO hat einen Traum verwirklicht, der bis in die Zeit zurückreicht, als das VLT in den 1980er Jahren konzipiert wurde: Das Licht aller vier Hauptteleskope auf dem Cerro Paranal zu kombinieren, um ein einziges Instrument zu speisen!"

Wenn alle vier 8,2-Meter-Hauptteleskope ihre Lichtsammelleistung kombinieren, um ein einzelnes Instrument zu speisen, wird das VLT was die lichtsammelnde Fläche betrifft effektiv zum größten optischen Teleskop der Welt.

Zwei der wichtigsten wissenschaftlichen Ziele von ESPRESSO sind die Entdeckung und Charakterisierung erdähnlicher Planeten und die Suche nach einer möglichen Veränderlichkeit der fundamentalen Naturkonstanten der Physik. Die letztgenannten Experimente erfordern die Beobachtung entfernter und schwacher Quasare, und dieses wissenschaftliche Ziel wird am meisten davon profitieren, wenn das Licht aller vier Hauptteleskope in ESPRESSO kombiniert wird. Beide Ziele erfordern eine hohe Präzision und Unempfindlichkeit des Instruments gegenüber äußeren einflüssen und zusätzlich eine extrem stabile Referenzlichtquelle.

Aufgrund der Komplexität dieses Unterfangens war die Kombination des Lichts aller vier Hauptteleskope auf diese Art und Weise, dem sogenannten "inkohärenten Fokus", bisher nicht realisiert worden. Allerdings wurde dafür von Anfang an Platz bei den Teleskopen und in der unterirdischen Struktur des Berges vorgesehen [2].

Ein System aus Spiegeln, Prismen und Linsen überträgt das Licht von jedem VLT-Hauptteleskopzu dem bis zu 69 Meter entfernten ESPRESSO-Spektrografen. Dank dieser komplexen Optik kann ESPRESSO entweder das Licht von mehreren Haupteleskopen - bis zu allen vieren - sammeln und so die Lichtstärke erhöhen oder aber das Licht von jedem der Hauptteleskope unabhängig voneinander empfangen, was eine flexiblere Nutzung der Beobachtungszeit ermöglicht. ESPRESSO wurde speziell für die Nutzung dieser Infrastruktur entwickelt.

Das Licht der vier Hauptteleskope wird routinemäßig im VLT-Interferometer zusammengeführt, um extrem feine Details in vergleichsweise hellen Objekten zu untersuchen. Doch die Interferometrie, die die Strahlen "kohärent" kombiniert, kann das enorme Lichtsammelpotential der kombinierten Teleskope zur Untersuchung lichtschwacher Objekte nicht ausschöpfen [3].

Projektwissenschaftler Paolo Molaro kommentiert: "Dieser beeindruckende Meilenstein ist der Höhepunkt der langjährigen Arbeit eines großen Teams von Wissenschaftlern und Ingenieuren. Es ist wunderbar zu sehen, wie ESPRESSO mit allen vier Hauptteleskopen arbeitet und ich freue mich auf die spannenden wissenschaftlichen Ergebnisse, die kommen werden."

Durch die Einspeisung des kombinierten Lichts in ein einziges Instrument erhalten Astronomen Zugang zu Informationen, die bisher nicht verfügbar waren. Die neue Anlage ist eine entscheidende Neuerung für die Astronomie mit hochauflösenden Spektrografen. Sie bedient sich neuartiger Konzepte, wie z.B. der Wellenlängenkalibrierung mit Hilfe eines Laserfrequenzkamms, die eine bisher unerreichte Präzision und Reproduzierbarkeit bietet, und nun die Fähigkeit, die Lichtsammelleistung der vier einzelnen Hauptteleskope zu vereinen [4].

"Wenn ESPRESSO mit allen vier Hauptteleskopen arbeitet, gibt uns das einen verlockenden Vorgeschmack auf das, was die nächste Generation von Teleskopen wie das Extremely Large Telescope der ESO in einigen Jahren bieten wird", so Xavier Barcons, Generaldirektor der ESO.

Endnoten

[1] ESPRESSO - der Planetenjäger der nächsten Generation - hat seine ersten Beobachtungen am 6. Dezember 2017 mit nur einem der vier Hauptteleskope (UTs) mit einem Durchmesser von 8,2 Metern durchgeführt, aus denen sich das VLT zusammensetzt.

[2] Das Wort "inkohärent" bedeutet, dass das Licht der vier Teleskope einfach addiert wird, ohne dass die Phaseninformation so berücksichtigt wird, wie sie im VLT-Interferometer vorliegt.

[3] Die neue inkohärente Kombination hat die Lichtsammelleistung eines Teleskops mit 16 Metern Durchmesser. Die Winkelauflösung bleibt jedoch die eines einzelnen 8-Meter-Teleskops, im Gegensatz zum VLT-Interferometer, bei dem die Auflösung auf die eines (virtuellen) Teleskops mit einer effektiven Apertur, die dem maximalen Abstand zwischen den einzelnen Teleskopen entspricht, erhöht wird.

[4] Der "AstroComb", ein Wellenlängen-Kalibriersystem auf Basis eines Laserfrequenzkamms, wurde von der Menlo Systems GmbH in Martinsried entwickelt und hergestellt.

Weitere Informationen

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Hinzu kommen das Gastland Chile und Australien als strategischer Partner. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist außerdem einer der Hauptpartner bei zwei Projekten auf Chajnantor, APEX und ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das European Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Links

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org

Francesco Pepe
University of Geneva
Geneva, Switzerland
E-Mail: Francesco.Pepe@unige.ch

Stefano Cristiani
INAF–Osservatorio Astronomico di Trieste
Trieste, Italy
E-Mail: cristiani@oats.inaf.it

Nuno Santos
Instituto de Astrofísica e Ciências do Espaço and Universidade do Porto
Porto, Portugal
E-Mail: Nuno.Santos@astro.up.pt

Rafael Rebolo
Instituto de Astrofísica de Canarias
Tenerife, Spain
E-Mail: rrl@iac.es

Gaspare Lo Curto
ESO
Garching, Germany
E-Mail: glocurto@eso.org

Antonio Manescau
ESO
Garching, Germany
E-Mail: amanesca@eso.org

Florian Kerber
ESO
Garching bei München, Germany
E-Mail: fkerber@eso.org

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1806.

Dr. Carolin Liefke, Haus der Astronomie | ESO-Media-Newsletter

Weitere Berichte zu: Astronomie ESO Telescope VLT Very Large Telescope

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics