Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das versteckte Innenleben des Orionnebels

12.05.2016

Im Wechselspiel von Magnetfeldern und Gravitation werden in der Gaswolke neue Sterne geboren

Im All kommen ständig Sonnen zur Welt. Häufig entstehen auch gleich ganze Sternhaufen auf einmal – und zwar in vergleichsweise kurzer Zeit. Um Letzteres zu erklären, schlagen Amelia Stutz und Andrew Gould vom Max-Planck-Institut für Astronomie in Heidelberg einen neuen Mechanismus vor. Dazu untersuchten die Forscher ein Gas- und Staubfilament, zu dem auch der bekannte Orionnebel gehört. Im Prinzip geht Sternentstehung einfach: Man nehme eine sehr kalte Wolke, bestehend aus Wasserstoffgas und etwas Staub und überlasse das System sich selbst. Dann werden im Lauf von einigen Millionen Jahren die hinreichend kalten Regionen unter dem Einfluss ihrer eigenen Schwerkraft kollabieren und neue Sterne bilden.


Kreißsaal der Sonnen: Auf diesen Aufnahmen des Sternentstehungsgebiets Orion A sind das integralförmige Filament, die zwei Sternhaufen oberhalb des Filaments sowie im Süden die Wolke L1641 zu sehen. Das linke Teilbild zeigt eine Dichtekarte aus Daten des Weltraumteleskops Herschel, das rechte eine Infrarotaufnahme des Weltraumteleskops WISE. Das mittlere Foto ist eine Kombination der beiden Bilder.

© A. M. Stutz / MPIA

Die Wirklichkeit ist komplizierter. Insbesondere scheint es zwei Arten der Sternentstehung zu geben. In gewöhnlichen, kleineren Molekülwolken entstehen nur einer oder ein paar Sterne – solange, bis sich das Gas über einen Zeitraum von rund drei Millionen Jahren zerstreut hat. Größere Wolken leben rund zehnfach länger. In ihnen kommen ganze Sternhaufen auf einmal zur Welt und werden sehr massereiche Sonnen geboren.

Woran liegt es, dass während dieser rund 30 Millionen Jahre so viele Sterne entstehen? Denn astronomisch gesehen ist der genannte Zeitraum recht kurz. Die meisten Erklärungsansätze gehen von einer Art Kettenreaktion aus, in der die Entstehung der ersten Sterne in der Wolke die Bildung weiterer Sterne auslöst. Dafür kommen etwa die Supernovaexplosionen der massereichsten (und daher kurzlebigsten) gerade entstandenen Sonnen infrage, denn deren Druckwellen komprimieren das Wolkenmaterial und schaffen dadurch die Keime für neue Sterne. 

Amelia Stutz und Andrew Gould vom Max-Planck-Institut für Astronomie in Heidelberg verfolgen einen anderen Ansatz und bringen Schwerkraft und Magnetfelder ins Spiel. Dazu haben sie die Region um den 1300 Lichtjahre entfernten Orionnebel unter die Lupe genommen. Die hellrote, komplex gemusterte Gaswolke zählt zu den bekanntesten Objekten am Himmel.

Ausgangspunkt für die Überlegungen von Stutz und Gould sind Karten der Massenverteilung in einer Struktur, die wegen ihrer Gestalt – sie ähnelt jener des geschwungenen Integralzeichens – den Namen „integralförmiges Filament“ trägt und zu der auch der Orionnebel im mittleren Abschnitt des Filaments gehört. Die Heidelberger Forscher zogen außerdem Studien zu den Magnetfeldern in und um dieses Objekt heran.

Die Daten zeigen, dass der Einfluss von Magnetfeldern und Gravitation auf das Filament ungefähr gleich groß ist. Darauf aufbauend entwickelten die beiden Astronomen ein Szenario, in dem das Filament ein flexibles, hin und her schwingendes Gebilde ist. Die üblichen Modelle der Sternentstehung hingegen legen Gaswolken zugrunde, die unter ihrer eigenen Schwerkraft kollabieren.

Wichtiger Beleg für das neue Bild ist die Verteilung von Protosternen und von jungen Sonnen in und um das Filament. Protosterne sind die Vorstufen von Sonnen: Sie ziehen sich noch weiter zusammen, bis ihre Kernregionen genügend hohe Dichten und Temperaturen erreicht haben, so dass dort im großen Stil Kernfusionsreaktionen einsetzen können. Jetzt erst ist der Stern geboren.

Protosterne sind leicht genug, um mitgenommen zu werden, wenn das Filament hin und her schwingt. Junge Sterne sind dagegen deutlich kompakter und werden vom Filament schlicht zurückgelassen oder wie aus einer Steinschleuder in den umgebenden Raum katapultiert. So kann das Modell erklären, was die Beobachtungsdaten in der Tat zeigen: Dass sich die Protosterne nur entlang des dichten Rückgrats des Filaments finden, junge Sterne dagegen vor allem außerhalb des Filaments.

Dieses Szenario birgt das Potenzial für einen neuen Mechanismus, der die Entstehung ganzer Sternhaufen auf (astronomisch gesehen) kurzen Zeitskalen erklären könnte. Die beobachteten Positionen der Sternhaufen legen nahe, dass das integralförmige Filament ursprünglich in nördliche Richtung deutlich weiter ausgedehnt war als heute. Über Millionen von Jahren scheint sich dann von Norden aus ein Sternhaufen nach dem anderen gebildet zu haben. Und jeder fertige Sternhaufen hat das ihn umgebende Gas-Staub-Gemisch mit der Zeit zerstreut.

Daher sehen wir heute drei Sternhaufen in und um das Filament: Der älteste Haufen ist am weitesten von der Nordspitze des Filaments entfernt; der zweite liegt näher und wird noch von Filamentresten umrankt; der dritte, mitten im integralförmigen Filament, ist gerade im Wachsen begriffen.

Das Wechselspiel von Magnetfeldern und Schwerkraft ermöglicht bestimmte Arten von Instabilitäten, die man zum Teil aus der Plasmaphysik kennt und die einen Sternhaufen nach dem anderen entstehen lassen könnten. Diese Hypothese beruht auf Beobachtungsdaten für das integralförmige Filament. Es handelt sich aber nicht um ein ausgereiftes Modell für einen neuen Modus der Sternentstehung. Zunächst müssten Theoretiker entsprechende Simulationen durchführen und Astronomen weitere Beobachtungen vornehmen.

Erst nach diesen Vorarbeiten wird sich herausstellen, ob die Molekülwolke im Orion einen Sonderfall darstellt. Oder ob die Geburt von Sternhaufen in einem Reigen magnetisch eingeschlossener Filamente der übliche Weg ist, um im Weltall innerhalb kurzer Zeit ganze Haufen neuer Sterne entstehen zu lassen.

Ansprechpartner

Dr. Markus Pössel

Öffentlichkeitsarbeit
Telefon:+49 6221 528-261Fax:+49 6221 528-246
E-Mail:pr@mpia.de
 

Dr. Amelia Stutz

Telefon:+49 6221 528-412
 

Dr. Andrew Gould

Telefon:+49 6221 528-464

Originalpublikation

Amelia M. Stutz, Andrew Gould

Slingshot Mechanism in Orion: Kinematic Evidence for Ejection of Protostars by Filaments

Dr. Markus Pössel | Max-Planck-Institut für Astronomie, Heidelberg

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf die Nähe kommt es an: Wie Kristall den Widerstand von Graphen beeinflusst
29.01.2020 | Georg-August-Universität Göttingen

nachricht Wie man ein Bild von einem Lichtpuls macht
27.01.2020 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Struktur und Funktion von Lichtrezeptor bei Cyanobakterien aufgeklärt

Chemie: Veröffentlichung in PNAS

Bestimmte Proteine dienen Pflanzen und auch Cyanobakterien als Lichtrezeptoren. Das Team des Center for Structural Studies (CSS) der Heinrich-Heine-Universität...

Im Focus: Protein pores packed in polymers make super-efficient filtration membranes

A multidisciplinary team of engineers and scientists has developed a new class of filtration membranes for a variety of applications, from water purification to small-molecule separations to contaminant-removal processes, that are faster to produce and higher performing than current technology. This could reduce energy consumption, operational costs and production time in industrial separations.

Led by Manish Kumar, associate professor in the Cockrell School of Engineering at The University of Texas at Austin, the research team describes their new...

Im Focus: Schnellster hochpräziser 3D-Drucker

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. (DOI: 10.1002/adfm.201907795).

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter...

Im Focus: Wie man ein Bild von einem Lichtpuls macht

Um die Form von Lichtpulsen zu messen, brauchte man bisher komplizierte Messanlagen. Ein Team von MPI Garching, LMU München und TU Wien schafft das nun viel einfacher.

Mit modernen Lasern lassen sich heute extrem kurze Lichtpulse erzeugen, mit denen man dann Materialien untersuchen oder sogar medizinische Diagnosen erstellen...

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Intelligentes Robotersystem an der TU Bergakademie Freiberg verbessert Trinkwasserkontrolle in Binnengewässern

29.01.2020 | Informationstechnologie

Struktur und Funktion von Lichtrezeptor bei Cyanobakterien aufgeklärt

29.01.2020 | Biowissenschaften Chemie

Unerwartetes Materialverhalten: Vom 2D-Kristall zum 1D-Draht

29.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics