Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das versteckte Innenleben des Orionnebels

12.05.2016

Im Wechselspiel von Magnetfeldern und Gravitation werden in der Gaswolke neue Sterne geboren

Im All kommen ständig Sonnen zur Welt. Häufig entstehen auch gleich ganze Sternhaufen auf einmal – und zwar in vergleichsweise kurzer Zeit. Um Letzteres zu erklären, schlagen Amelia Stutz und Andrew Gould vom Max-Planck-Institut für Astronomie in Heidelberg einen neuen Mechanismus vor. Dazu untersuchten die Forscher ein Gas- und Staubfilament, zu dem auch der bekannte Orionnebel gehört. Im Prinzip geht Sternentstehung einfach: Man nehme eine sehr kalte Wolke, bestehend aus Wasserstoffgas und etwas Staub und überlasse das System sich selbst. Dann werden im Lauf von einigen Millionen Jahren die hinreichend kalten Regionen unter dem Einfluss ihrer eigenen Schwerkraft kollabieren und neue Sterne bilden.


Kreißsaal der Sonnen: Auf diesen Aufnahmen des Sternentstehungsgebiets Orion A sind das integralförmige Filament, die zwei Sternhaufen oberhalb des Filaments sowie im Süden die Wolke L1641 zu sehen. Das linke Teilbild zeigt eine Dichtekarte aus Daten des Weltraumteleskops Herschel, das rechte eine Infrarotaufnahme des Weltraumteleskops WISE. Das mittlere Foto ist eine Kombination der beiden Bilder.

© A. M. Stutz / MPIA

Die Wirklichkeit ist komplizierter. Insbesondere scheint es zwei Arten der Sternentstehung zu geben. In gewöhnlichen, kleineren Molekülwolken entstehen nur einer oder ein paar Sterne – solange, bis sich das Gas über einen Zeitraum von rund drei Millionen Jahren zerstreut hat. Größere Wolken leben rund zehnfach länger. In ihnen kommen ganze Sternhaufen auf einmal zur Welt und werden sehr massereiche Sonnen geboren.

Woran liegt es, dass während dieser rund 30 Millionen Jahre so viele Sterne entstehen? Denn astronomisch gesehen ist der genannte Zeitraum recht kurz. Die meisten Erklärungsansätze gehen von einer Art Kettenreaktion aus, in der die Entstehung der ersten Sterne in der Wolke die Bildung weiterer Sterne auslöst. Dafür kommen etwa die Supernovaexplosionen der massereichsten (und daher kurzlebigsten) gerade entstandenen Sonnen infrage, denn deren Druckwellen komprimieren das Wolkenmaterial und schaffen dadurch die Keime für neue Sterne. 

Amelia Stutz und Andrew Gould vom Max-Planck-Institut für Astronomie in Heidelberg verfolgen einen anderen Ansatz und bringen Schwerkraft und Magnetfelder ins Spiel. Dazu haben sie die Region um den 1300 Lichtjahre entfernten Orionnebel unter die Lupe genommen. Die hellrote, komplex gemusterte Gaswolke zählt zu den bekanntesten Objekten am Himmel.

Ausgangspunkt für die Überlegungen von Stutz und Gould sind Karten der Massenverteilung in einer Struktur, die wegen ihrer Gestalt – sie ähnelt jener des geschwungenen Integralzeichens – den Namen „integralförmiges Filament“ trägt und zu der auch der Orionnebel im mittleren Abschnitt des Filaments gehört. Die Heidelberger Forscher zogen außerdem Studien zu den Magnetfeldern in und um dieses Objekt heran.

Die Daten zeigen, dass der Einfluss von Magnetfeldern und Gravitation auf das Filament ungefähr gleich groß ist. Darauf aufbauend entwickelten die beiden Astronomen ein Szenario, in dem das Filament ein flexibles, hin und her schwingendes Gebilde ist. Die üblichen Modelle der Sternentstehung hingegen legen Gaswolken zugrunde, die unter ihrer eigenen Schwerkraft kollabieren.

Wichtiger Beleg für das neue Bild ist die Verteilung von Protosternen und von jungen Sonnen in und um das Filament. Protosterne sind die Vorstufen von Sonnen: Sie ziehen sich noch weiter zusammen, bis ihre Kernregionen genügend hohe Dichten und Temperaturen erreicht haben, so dass dort im großen Stil Kernfusionsreaktionen einsetzen können. Jetzt erst ist der Stern geboren.

Protosterne sind leicht genug, um mitgenommen zu werden, wenn das Filament hin und her schwingt. Junge Sterne sind dagegen deutlich kompakter und werden vom Filament schlicht zurückgelassen oder wie aus einer Steinschleuder in den umgebenden Raum katapultiert. So kann das Modell erklären, was die Beobachtungsdaten in der Tat zeigen: Dass sich die Protosterne nur entlang des dichten Rückgrats des Filaments finden, junge Sterne dagegen vor allem außerhalb des Filaments.

Dieses Szenario birgt das Potenzial für einen neuen Mechanismus, der die Entstehung ganzer Sternhaufen auf (astronomisch gesehen) kurzen Zeitskalen erklären könnte. Die beobachteten Positionen der Sternhaufen legen nahe, dass das integralförmige Filament ursprünglich in nördliche Richtung deutlich weiter ausgedehnt war als heute. Über Millionen von Jahren scheint sich dann von Norden aus ein Sternhaufen nach dem anderen gebildet zu haben. Und jeder fertige Sternhaufen hat das ihn umgebende Gas-Staub-Gemisch mit der Zeit zerstreut.

Daher sehen wir heute drei Sternhaufen in und um das Filament: Der älteste Haufen ist am weitesten von der Nordspitze des Filaments entfernt; der zweite liegt näher und wird noch von Filamentresten umrankt; der dritte, mitten im integralförmigen Filament, ist gerade im Wachsen begriffen.

Das Wechselspiel von Magnetfeldern und Schwerkraft ermöglicht bestimmte Arten von Instabilitäten, die man zum Teil aus der Plasmaphysik kennt und die einen Sternhaufen nach dem anderen entstehen lassen könnten. Diese Hypothese beruht auf Beobachtungsdaten für das integralförmige Filament. Es handelt sich aber nicht um ein ausgereiftes Modell für einen neuen Modus der Sternentstehung. Zunächst müssten Theoretiker entsprechende Simulationen durchführen und Astronomen weitere Beobachtungen vornehmen.

Erst nach diesen Vorarbeiten wird sich herausstellen, ob die Molekülwolke im Orion einen Sonderfall darstellt. Oder ob die Geburt von Sternhaufen in einem Reigen magnetisch eingeschlossener Filamente der übliche Weg ist, um im Weltall innerhalb kurzer Zeit ganze Haufen neuer Sterne entstehen zu lassen.

Ansprechpartner

Dr. Markus Pössel

Öffentlichkeitsarbeit
Telefon:+49 6221 528-261Fax:+49 6221 528-246
E-Mail:pr@mpia.de
 

Dr. Amelia Stutz

Telefon:+49 6221 528-412
 

Dr. Andrew Gould

Telefon:+49 6221 528-464

Originalpublikation

Amelia M. Stutz, Andrew Gould

Slingshot Mechanism in Orion: Kinematic Evidence for Ejection of Protostars by Filaments

Dr. Markus Pössel | Max-Planck-Institut für Astronomie, Heidelberg

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planetologen erklären, wie die Entstehung des Mondes Wasser auf die Erde brachte
21.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Kernoberfläche beeinflusst Neutronenbindung
17.05.2019 | Technische Universität Darmstadt

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Impfen über die Haut – Gezielter Wirkstofftransport mit Hilfe von Nanopartikeln

Forschenden am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist es gelungen Nanopartikel so weiterzuentwickeln, dass sie von speziellen Zellen der menschlichen Haut aufgenommen werden können. Diese sogenannten Langerhans Zellen koordinieren die Immunantwort und alarmieren den Körper, wenn Erreger oder Tumore im Organismus auftreten. Mit dieser neuen Technologieplattform könnten nun gezielt Wirkstoffe, zum Beispiel Impfstoffe oder Medikamente, in Langerhans Zellen eingebracht werden, um eine kontrollierte Immunantwort zu erreichen.

Die Haut ist ein besonders attraktiver Ort für die Applikation vieler Medikamente, die das Immunsystem beeinflussen. Die geeigneten Zielzellen liegen in der...

Im Focus: Chaperone halten das Tumorsuppressor-Protein p53 in Schach: Komplexer Regelkreis schützt vor Krebs

Über Leben und Tod einer Zelle entscheidet das Anti-Tumor-Protein p53: Erkennt es Schäden im Erbgut, treibt es die Zelle in den Selbstmord. Eine neue Forschungsarbeit an der Technischen Universität München (TUM) zeigt, dass diese körpereigene Krebsabwehr nur funktioniert, wenn bestimmte Proteine, die Chaperone, dies zulassen.

Eine Krebstherapie ohne Nebenwirkungen, die gezielt nur Tumorzellen angreift – noch können Ärzte und Patienten davon nur träumen. Dabei hat die Natur ein...

Im Focus: Wasserstoff – Energieträger der Zukunft?

Fraunhofer-Allianz Energie auf Berliner Energietagen

Im Pariser Klimaabkommen beschloss die Weltgemeinschaft, dass die weltweite Wirtschaft zwischen 2050 und 2100 treibhausgasneutral werden soll. Um die...

Im Focus: Quanten-Cloud-Computing mit Selbstcheck

Mit einem Quanten-Coprozessor in der Cloud stoßen Innsbrucker Physiker die Tür zur Simulation von bisher kaum lösbaren Fragestellungen in der Chemie, Materialforschung oder Hochenergiephysik weit auf. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie Phänomene der Teilchenphysik auf 20 Quantenbits simuliert haben und wie der Quantensimulator das Ergebnis erstmals selbständig überprüft hat.

Aktuell beschäftigen sich viele Wissenschaftler mit der Frage, wie die „Quantenüberlegenheit“ auf heute schon verfügbarer Hardware genutzt werden kann.

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

Diabetes Kongress 2019: „Diabetes – Nicht nur eine Typ-Frage“

21.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungsnachrichten

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungsnachrichten

Europa-Preis: DFG zeichnet ausgewählte „Jugend forscht“-Sieger aus

22.05.2019 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics