Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Universum in einem Kristall

20.07.2017

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder niemals aus dem Nichts entstehen, eine zentrale Rolle. Diese Messgrößen bestimmen, welche physikalischen Prozesse in unserem Universum möglich sind.


Forschern ist es gelungen, ein ausreichend starkes Schwerefeld, welches eigentlich nur weit draußen im Universum existiert, in einem Kristall nachzuempfinden

Bildrechte: Robert Strasser, Kees Scherer; Komposition: Michael Büker, Lizenz: gemeinfrei

In bestimmten Situationen jedoch, nämlich genau dann, wenn man von der klassischen Physik zu einer nicht-klassischen Betrachtung (Quantenmechanik) übergeht, sind diese Größen nicht mehr zwangsläufig erhalten. Man spricht dann von Quantenanomalien.

Eine dieser Quantenanomalien, die z.B. zur Beschreibung von Neutronensternen von theoretischen Physikern angedacht wurde, aber noch nie experimentell nachgewiesen werden konnte, ist die Schwerkraft-Quantenanomalie: der Zusammenbruch eigentlich stets erhaltener Messgrößen – in diesem Fall der Energie und des Impulses – in gleichzeitig angelegten und parallel verlaufenden Magnet- und Schwerefeldern.

Forschern ist es nun erstmals gelungen, diese Quantenanomalie experimentell in Kristallen nachzuweisen. Dabei konnten sie eine große experimentelle Schwierigkeit umgehen: Ausreichend starke Schwerefelder zur Beobachtung der Schwerkraft-Quantenanomalie, und die damit einhergehende, von Einstein vorausgesagte Krümmung der Raumzeit, liegen zwar bei Neutronensternen oder in der Nähe Schwarzer Löchern vor, können aber nicht im Labor auf der Erde realisiert werden. Somit war die Messung der theoretisch vorausgesagten Schwerkraft-Quantenanomalie bisher unmöglich.

Wie das Forscherteam nun im Fachmagazin Nature berichtet, haben sie einen unerwarteten Ausweg aus diesem experimentellen Dilemma gefunden: In ihrem Experiment nutzten die Forscher erstmals die Erkenntnis, dass sich unter bestimmten Umständen in Kristallen ein Schwerefeld durch einen Temperaturunterschied nachahmen lässt. So können Messungen in Gravitationsfeldern nachgestellt werden, ohne dass dafür eine Krümmung der Raumzeit im Labor erzeugen werden müsste.

Neuartige Materialien – sogenannte Weyl-Halbmetalle - stellen für die Forscher eine ideale Messplattform dar. In diesen Materialien gibt es bestimmte Elektronen (Weyl-Fermionen), die aufgrund ihrer speziellen Eigenschaften für das Forscherteam beim Nachweis der Schwerkraft-Quantenanomalie von besonderem Interesse waren. Diese Elektronen haben zwei verschiedene Drehrichtungen (Chiralitäten) – so gibt es sowohl links- wie auch rechtsdrehende Elektronen.

Eine Besonderheit dieser Materialien besteht darin, dass die Energie und der Impuls der Elektronen eines Drehsinns jeweils eine stets erhaltene Messgröße darstellt. So kann weder im linksdrehenden noch im rechtsdrehenden Elektronenreservoir Energie oder Impuls verloren oder hinzugewonnen werden – es sei denn es liegt eine Quantenanomalie vor.

Ein solches, neuartiges Material setzten die Forscher im Experiment einem Temperaturunterschied aus, der in gewöhnlichen elektrischen Leitern einen Stromfluss verursacht. In dem untersuchten speziellen Halbmetall-Material darf nun allerdings gerade kein Stromfluss zustande kommen, da dies Ausdruck der stets erhaltenen Energie und des stets erhaltenen Impulses der beiden Elektronenreservoirs ist.

Als die Forscher zusätzlich noch einen Temperaturunterschied über den Kristall erzeugten und in gleicher Richtung ein Magnetfeld anlegten, beobachten sie jedoch einen Stromfluss, der mit ansteigendem Magnetfeld weiter zunahm. Dieser resultiert daraus, dass die eigentlich stets bewahrte Energie und der stets bewahrte Impuls der Elektronen eines Drehsinn nun nicht mehr erhalten ist und linksdrehende Elektronen beispielweise mehr Energie und einen größeren Impuls haben als rechtdrehende Elektronen.

Dieses werten die Forscher als ersten experimentellen Nachweis der Schwerkraft-Quantenanomalie.
Den Forschern ist es somit erstmals im Experiment gelungen, eine Quantenanomalie unter Beteiligung eines simulierten Schwerefeldes zu beobachten.

„Extrem spannend ist, dass wir mit Hilfe dieses Experiments aus dem Bereich der Festkörperphysik eine physikalische Fragestellung beantworten konnten, die auch in vielen anderen Bereichen der Physik außerhalb der Materialforschung eine wichtige Rolle spielt.“ freut sich Anna Niemann, Doktorandin im Team von Professor Nielsch am IFW Dresden. So seien die Ergebnisse dieser Studie relevant für z.B. Astrophysiker um Prozesse im frühen Universum aufzuklären bis hin zu Teilchenphysiker um mögliche Teilchenzerfälle zu verifizieren.

Das Autorenteam besteht aus Dresdner Wissenschaftlern der Technischen Universität, des Max-Planck-Instituts für Chemische Physik fester Stoffe und des IFW Dresden sowie aus Partnern vom IBM-Research Zürich, des Weizmann Institute of Science in Israel, der Berkeley Universität in Kalifornien und den Universitäten in Madrid und Hamburg. Im IFW Dresden stehen die Arbeiten unter Leitung von Prof. Dr. Kornelius Nielsch, der seit 2015 Direktor des IFW-Instituts für Metallische Werkstoffe am IFW Dresden ist und das Gebiet der thermoelektrischen Materialien und Messmethoden, zu dem auch diese Arbeit zählt, am IFW Dresden wieder etabliert hat.

Originalveröffentlichung: J. Gooth, A. C. Niemann, T. Meng, A. G. Grushin, K. Landsteiner, B. Gotsmann, F. Menges, M. Schmidt, C. Shekhar, V. Süß, R. Hühne, B. Rellinghaus, C. Felser, B. Yan, K. Nielsch: “Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP” DOI: 10.1038/nature23005

Hintergrundinformationen

Thermoelektrik: Das Feld der Thermoelektrik wurde 1821 von T. J. Seebeck begründet, der erkannte, dass ein Temperaturunterschied entlang eines elektrischen Leiters einen Stromfluss verursacht. Am IFW Dresden werden im Fachgebiet der Thermoelektrik sowohl neue Materialien und Bauelemente zur effizienteren Anwendung dieser umweltfreundlichen und „grünen“ Art der Energiegewinnung untersucht als auch physikalische Grundlagenforschung im Bereich der Thermoelektrik betrieben. Die Spanne der untersuchten Materialien reicht dabei von cm-großen Multikristallen bis zu sehr kleinen Nanokristallen, die einen sehr hohen Anteil an Oberflächenatomen besitzen. Sogenannte thermoelektrische Materialien, die eine besonders effiziente Stromerzeugung durch einen Temperaturunterschied versprechen, werden von den Forschern hierbei vor allem für die Ausnutzung von industrieller Abwärme zur Stromerzeugung optimiert. Auch die neuartigen Materialsysteme (z.B. Topologische Isolatoren, Dirac- und Weyl-Metalle) sind nicht nur aufgrund der fundamentalen Eigenschaften bei der Ladungs- und Wärmeleitung für viele grundlegende Experimente am IFW von großem aktuellem Interesse und tragen hierbei zum tieferen, naturwissenschaftlichen Verständnis dieser Materialen bei, sondern können sehr wahrscheinlich zur Entwicklung von nanokristallinen Funktionswerkstoffen und zum Einsatz in thermoelektrischen Modulen und Systemen verwendet werden.

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden:
Das IFW Dresden betreibt Grundlagenforschung und anwendungsorientierte Forschung auf dem Gebiet der Festkörper- und Werkstoffwissenschaften. Im Mittelpunkt des Forschungsprogramms stehen physikalische und chemische Eigenschaften von Festkörpern, die für neue Funktionswerkstoffe interessant und nutzbar sind. Das Institut bedient sich dabei eines breiten Spektrums theoretischer und experimenteller Ansätze zum Verständnis der elektronischen Struktur von Quanten- und nanoskaligen Materialien. Ziel ist es u. a. neue Anwendungen hervorzubringen, die auf diesen funktionalen Materialien, erforschten physikalischen Effekten und neuentwickelten Bauelementen beruhen.
Daneben gehört es zu den Aufgaben des Instituts, die Fortbildung des wissenschaftlichen und technischen Nachwuchses zu fördern und die gewonnenen Erkenntnisse für die Wirtschaft nutzbar zu machen.
Das IFW Dresden ist Mitglied der Leibniz-Gemeinschaft. Es hat ca. 500 Mitarbeiter und wird von Bund und Ländern jeweils zur Hälfte gefördert.

Kontakt für weitere Informationen:
Prof. Dr. Kornelius Nielsch
Tel. 0351 4659-104
k.nielsch@ifw-dresden.de

Anna Niemann
Tel. 0351 4659-798
a.niemann@ifw-dresden.de

Weitere Informationen:

http://www.ifw-dresden.de
http://www.nature.com/nature/journal/v547/n7663/index.html

Dr. Carola Langer | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Erkenntnisse zur Fortbewegung von Spins
21.06.2019 | Johannes Gutenberg-Universität Mainz

nachricht Blick auf die Erde vor der Sonne
19.06.2019 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT zeigt akustische Qualitätskontrolle auf der Fachmesse für Messtechnik »Sensor + Test 2019«

Das Ilmenauer Fraunhofer-Institut für Digitale Medientechnologie IDMT präsentiert vom 25. bis 27. Juni 2019 am Gemeinschaftsstand der Fraunhofer-Gesellschaft (Stand 5-248) seine neue Lösung zur berührungslosen, akustischen Qualitätskontrolle von Werkstücken und Bauteilen. Da die Prüfung zerstörungsfrei funktioniert, kann teurer Prüfschrott vermieden werden. Das Prüfverfahren wird derzeit gemeinsam mit verschiedenen Industriepartnern im praktischen Einsatz erfolgreich getestet und hat das Technology Readiness Level (TRL) 6 erreicht.

Maschinenausfälle, Fertigungsfehler und teuren Prüfschrott reduzieren

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Plastik: Mehr Kreislauf gegen die Krise gefordert

21.06.2019 | Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Künstliche Intelligenz preisgekrönt „Made in Germany“

24.06.2019 | Förderungen Preise

Laserlicht spürt Tumore auf: Jenaer Forscher präsentieren neuartiges Gerät zur operationsbegleitenden Krebsdiagnose

21.06.2019 | Medizintechnik

Künstliche Intelligenz lernt Nervenzellen am Aussehen zu erkennen

21.06.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics