Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Universum auf die Waage stellen

25.02.2016

Ein internationales Forscherteam unter Mitwirkung von Wissenschaftlern des Bonner Max-Planck-Instituts für Radioastronomie hat mit der Kombination von Beobachtungen mit Radio- und mit optischen Teleskopen den genauen Ursprung eines schnellen Radiostrahlungsausbruchs in einer weit entfernten Galaxie bestimmt. Aus der Signalverzögerung auf dem zurückgelegten Weg ist es ihnen gelungen, Rückschlüsse auf die Materieverteilung im Universum zu ziehen. Die Ergebnisse bestätigen derzeitige kosmologische Modelle zur Materieverteilung im Universum.

Am 18. April 2015 wurde mit dem 64m-Parkes-Radioteleskop in Australien im Rahmen einer systematischen Suche nach Pulsaren und Radiostrahlungsausbrüchen (“SUrvey for Pulsars and Extragalactic Radio Bursts, SUPERB) ein schneller Radiostrahlungsausbruch („Fast Radio Burst“, FRB) entdeckt.


Links: Blickfeld der Beobachtungen mit dem Parkes-Radioteleskop. Rechts: Reihe von Ausschnittvergrößerungen mit optischem Bild der „Host-Galaxie“, aufgenommen vom Subaru-Teleskop, unten rechts.

D. Kaplan (UWM), E. F. Keane (SKAO)


Verzögerung in der Ankunftszeit des Radiosignals als Funktion der Frequenz, hervorgerufen durch Materie, die das Signal von seinem Ursprung über sechs Milliarden Lichtjahren bis zur Erde durchquert.

E. F. Keane (SKAO)

Eine unmittelbar darauf losgeschickte internationale Benachrichtigung führte dazu, dass innerhalb von nur wenigen Stunden eine ganze Anzahl von Teleskopen weltweit nach dem Signal suchten, darunter das „Australia Telescope Compact Array“ (ATCA) und das 100m-Radioteleskop Effelsberg in Deutschland.

Bei FRBs handelt es sich um rätselhafte helle Radioblitze, die im Allgemeinen nur wenige Millisekunden andauern. Ihr eigentlicher Ursprung ist bisher unbekannt, wobei eine ganze Reihe möglicher Phänomene mit ihnen in Verbindung gebracht werden. FRBs sind sehr schwierig zu entdecken; mit dem aktuellen Beispiel sind nur insgesamt 17 solcher Ausbrüche bekannt.

“Bisher konnte man FRBs nur im Nachhinein durch die Analyse von Monate oder sogar Jahre vorher aufgenommener Daten identifizieren”, sagt Evan Keane, Projektwissenschaftler bei der „Square Kilometre Array Organisation“ und Erstautor der vorliegenden Studie, „Dann ist es natürlich zu spät, um direkte Nachfolgebeobachtungen des Phänomens durchführen zu können.“

Um dies zu vermeiden, hat das Forscherteam mit „SUPERB“ ein spezielles Beobachtungssystem entwickelt, mit dem FRBs innerhalb von Sekunden aufgespürt werden können und in dessen Rahmen eine Reihe von Teleskopen für unmittelbare Nachfolgebeobachtungen alarmiert werden, aus denen zusätzliche Informationen von der direkten Nachwirkung des Radioblitzes gewonnen werden können.

Mit der hohen Winkelauflösung der kombinierten sechs 22m-Antennen des ATCA konnte die Richtung, aus der das Radiosignal kam, wesentlich genauer als vorher bestimmt werden, wobei ein „Nachglimmen“ des ursprünglichen Strahlungsausbruchs insgesamt sechs Tage lang beobachtet werden konnte, ehe es unter die Nachweisgrenze geriet. Durch die lange Beobachtungszeit konnte die Position am Himmel 1000mal genauer festgelegt werden als bei vorher gefundenen FRBs.

Ein weiteres Puzzlestück kam über optische Beobachtungen mit dem 8,2m-Subaru-Teleskop auf Hawaii hinzu, mit denen eine elliptische Galaxie in rund sechs Milliarden Lichtjahren Entfernung als Ursprungsort für das Radiosignal gefunden werden konnte.

„Es ist das erste Mal überhaupt, dass wir die Ursprungsgalaxie eines FRB identifizieren konnten“, fügt Evan Keane hinzu. Die optischen Beobachtungen ermöglichten die Bestimmung einer Rotverschiebung für die Galaxie (das ist die Geschwindigkeit, mit der sich das Objekt aufgrund der Expansion des Universums von uns entfernt), und damit auch zum ersten Mal der Entfernung für einen FRB.

Um die Physik eines solchen Ereignisses zu verstehen, ist die Bestimmung von grundliegenden Eigenschaften erforderlich wie der genauen Position, der Entfernung der Quelle und ob sich das Ereignis ggf. wiederholt.

„Unsere Analyse führt uns zu dem Schluss, dass dieser neue Radiostrahlungsausbruch sich nicht wiederholen wird, sondern dass er auf ein verheerendes Ereignis in dieser fernen Galaxie zurückgeht“, sagt Michael Kramer vom Max-Planck-Institut für Radioastronomie in Bonn, der die Struktur des Radioprofils in der Beobachtung analysiert hat. Mit dem 100m-Radioteleskop Effelsberg des Instituts wurden auch Nachfolgebeobachtungen des Ereignisses durchgeführt.

FRBs zeigen eine frequenzabhängige Dispersion, eine Verzögerung des Radiosignals, die davon abhängt, wieviel Materie das Signal auf seinem Weg zur Erde durchlaufen hat. „Bis jetzt war das Dispersionsmaß alles, was wir zur Analyse hatten. Mit der zusätzlichen Entfernungsangabe können wir nun die Materiedichte zwischen dem Ursprungsort und der Erde bestimmen und mit gängigen Modellen der Materieverteilung im Universum vergleichen“, sagt Ko-Autor Simon Johnston von der Astronomy and Space Science Division der CSIRO in Sydney. „Das ermöglicht uns letztendlich, das Universum zu wiegen, oder zumindest seinen Anteil an normaler Materie.“

Im derzeitigen Modell zum Aufbau des Universums wird von folgender Zusammensetzung ausgegangen: 70% Dunkle Energie, 25% Dunkle Materie und 5% „gewöhnliche“ Materie, worunter alles fällt, was wir direkt wahrnehmen können. Allerdings können Astronomen durch Beobachtungen von Sternen, Galaxien und Wasserstoff im Universum nur ungefähr die Hälfte dieser 5% belegen; der Rest ist nicht unmittelbar sichtbar und wird daher auch als „fehlende Materie“ bezeichnet.

„Die gute Nachricht ist, dass unsere Beobachtungen und das Modell übereinstimmen, und dass wir somit die fehlende Materie gefunden haben“, erklärt Evan Keane. „Zum ersten Mal hat ein schneller Radiostrahlungsausbruch eine kosmologische Beobachtung ermöglicht.“

„Unsere Resultate zeigen das Potential der FRBs als neues Werkzeug für die Kosmologie”, schließt Michael Kramer, der auch die Berechnungen zur Bestimmung der fehlenden Materie durchgeführt hat. „Was wird erst möglich sein, wenn wir Hunderte dieser Quellen entdeckt haben?“

In Zukunft wird das „Square Kilometre Array“ (SKA) mit seiner extrem hohen Empfindlichkeit und Winkelauflösung und seinem großen Blickfeld es ermöglichen, eine Vielzahl neuer FRBs zu entdecken und deren Ursprungsgalaxien zu bestimmen. Eine wesentlich vergrößerte Stichprobe dieser Objekte wird zu Präzisionsmessungen von kosmologischen Parametern wie der Verteilung von Materie im Universum führen und ein besseres Verständnis der Dunklen Energie ermöglichen.

Der “SUrvey for Pulsars and Extragalactic Radio Bursts” (SUPERB) ist ein großangelegtes Projekt unter Einsatz einer Reihe von Teleskopen und Supercomputern für neue astrophysikalische Entdeckungen, insbesondere in Verbindung mit Pulsaren und schnellen Radiostrahlungsausbrüchen (FRBs).


Originalveröffentlichung:

“The host galaxy of a fast radio burst”, E. F. Keane, S. Johnston, S. Bhandari, E. Barr, N. D. R. Bhat, M. Burgay, M. Caleb, C. Flynn, A. Jameson, M. Kramer, E. Petroff, A. Possenti, W. van Straten, M. Bailes, S. Burke-Spolaor, R. P. Eatough, B. Stappers, T. Totani, M. Honma, H. Furusawa, T. Hattori, T. Morokuma, Y. Niino, H. Sugai, T. Terai, N. Tominaga, S. Yamasaki, N. Yasuda, R. Allen, J. Cooke, J. Jencson, M. M. Kasliwal, D. L. Kaplan, S. J. Tingay, A. Williams, R. Wayth, P. Chandra, D. Perrodin, M. Berezina, M. Mickaliger & C. Bassa.

Veröffentlichung in "Nature", am 25. Februar 2016 (Sperrfrist bis 24. Februar 2016, 19:00 MEZ).

Lokaler Kontakt:

Prof. Dr. Michael Kramer
Direktor und Leiter der Forschungsabteilung „Radioastronomische Fundamentalphysik“
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-278
E-mail: mkramer@mpifr-bonn.mpg.de

Dr. Ralph Eatough
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-122
E-mail: reatough@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressemeldungen/2016/4

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht NASA-Mission ermöglicht genaue Messungen von Neutronensternen - Kernphysik-Team der TU Darmstadt beteiligt
13.12.2019 | Technische Universität Darmstadt

nachricht Hochgeladenes Ion bahnt den Weg zu neuer Physik
11.12.2019 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virenvermehrung in 3D

Vaccinia-Viren dienen als Impfstoff gegen menschliche Pockenerkrankungen und als Basis neuer Krebstherapien. Zwei Studien liefern jetzt faszinierende Einblicke in deren ungewöhnliche Vermehrungsstrategie auf atomarer Ebene.

Damit Viren sich vermehren können, benötigen sie in der Regel die Unterstützung der von ihnen befallenen Zellen. Nur in deren Zellkern finden sie die...

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IPT und Ericsson starten mit 5G-Industry Campus Europe größtes industrielles 5G-Forschungsnetz Europas

13.12.2019 | Informationstechnologie

Virenvermehrung in 3D

13.12.2019 | Biowissenschaften Chemie

Dem Feind auf der Spur: Neuer Algorithmus erkennt sogar kleinste Krebsmetastasen im ganzen Mauskörper

13.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics