Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie des kosmologischen Dunklen Zeitalters im Labor untersucht

19.07.2019

Neue Messungen ergeben eine dramatisch höhere Häufigkeit von Heliumhydrid-Ionen im frühen Universum

Physiker berichten über erste Labormessungen zu Reaktionen von Elektronen mit Heliumhydrid-Ionen im kryogenen Speicherring CSR am Heidelberger Max-Planck-Institut für Kernphysik. Bei tiefen Temperaturen von 6 K stellten sich die das Molekül zerstörenden Reaktionsraten im Vergleich zu früheren Messungen bei Raumtemperatur als signifikant geringer heraus.


Schemazeichnung der CSR-Ringstruktur mit gespeichertem HeH+-Ionenstrahl (rot), überlagertem Elektronenstrahl (blau), Reaktionsprodukten (grün) und Teilchendetektor (unten: detailliertes Reakti

Grafik: MPIK


Plasmatemperatur-Abhängigkeit der Rekombinationsratenkoeffizienten, hier gemessen für einzelne Rotationszustände (J = 0, 1, 2, ...) im Vergleich zu Werten aus bisherigen Datentabellen.

Grafik: MPIK

Daraus ergibt sich eine deutlich größere Häufigkeit dieses primordialen Moleküls, das als Kühlmittel zur Bildung von Sternen und Galaxien im frühen Universum beiträgt. [Science, 18. Juli 2019]

Nur drei Minuten nach dem Urknall stand die chemische Zusammensetzung des Universums fest: 75% Wasserstoff, 25% Helium und Spuren von Lithium – erzeugt in der primordialen Nukleosynthese.

In diesem frühen Zustand war die gesamte Materie aber noch vollständig ionisiert, bestehend aus freien nackten Atomkernen und einem heißen Elektronengas – ein „nebliges“ Plasma für die kosmische Hintergrundstrahlung. Ungefähr 400.000 Jahre später hatte sich das expandierende Universum soweit abgekühlt, dass Elektronen und Kerne begannen, sich zu neutralen Atomen zu verbinden.

Es wurde durchsichtig, aber es gab noch keine Sterne, weshalb diese Ära das „Dunkle Zeitalter“ genannt wird. Mit weiter fallender Temperatur bildete sich durch Kollision von Helium mit noch vorhandenen freien Protonen das erste Molekül: das Heliumhydrid-Ion (HeH⁺) – der Anfang der Chemie. HeH⁺ und andere frühe Moleküle spielten durch Infrarotemission eine entscheidende Rolle zur Kühlung primordialer Gaswolken, ein notwendiger Schritt zur Sternentstehung.

Das Verständnis und die Modellierung dieser Prozesse erfordern eine detaillierte Kenntnis der Häufigkeit und der Reaktionsraten der relevanten Moleküle. Jedoch ist der Wissensstand hierüber bislang sehr begrenzt, insbesondere im Bereich niedriger Temperaturen (< 100 K) des späten Dunklen Zeitalters, als sich etwa 300 Millionen Jahre nach dem Urknall die ersten Sterne bildeten. Kürzlich wurde HeH⁺ anhand seiner Fern-Infrarot-Strahlung erstmals in unserer Galaxis nachgewiesen [1].

Die Häufigkeit von HeH+ hängt kritisch von Reaktionen ab, die dieses abbauen. Bei niedrigen Temperaturen dominiert der Abbau durch die sogenannte dissoziative Rekombination (DR) mit freien Elektronen dominiert. Sobald Heliumhydrid durch einen Elektroneneinfang neutralisiert ist, zerfällt es in Helium- und Wasserstoff-Atome.

Bisher in Datentabellen für die Reaktionsraten verfügbare Werte beruhten auf Laborexperimenten bei Raumtemperatur. Unter diesen Bedingungen befinden sich die Moleküle in recht hohen Rotations-Anregungszuständen, die immer im Verdacht standen, den Elektroneneinfangprozess zu beeinflussen.

Um einen tieferen Einblick in das Verhalten bei niedrigen Temperaturen zu gewinnen, haben Physiker der Abteilung von Klaus Blaum am Heidelberger Max-Planck-Institut für Kernphysik (MPIK) [2] Stöße von HeH⁺ mit Elektronen am kryogenen Speicherring CSR des Instituts untersucht.

Diese weltweit einzigartige Maschine wurde für Laborastrophysik unter Weltraumbedingungen – hinsichtlich Temperaturen und Dichten – entworfen und aufgebaut. Der CSR bietet eine Umgebung mit Temperaturen unter 10 K und ein exzellentes Vakuum (beobachtet wurden weniger als 10⁻¹⁴ mbar).

Die Rekombination wurde an einem Elektronentarget untersucht, wo der gespeicherte Ionenstrahl über eine Strecke von etwa 1 m in einem gleichgerichteten Elektronenstrahl eingebettet ist (Bild 1). Die relativen Geschwindigkeiten lassen sich bis zum Wert Null einstellen, was einen Zugang zu sehr geringen Kollisionsenergien bietet.

Die Reaktionsprodukte aus der Elektron-Ion-Wechselwirkungszone werden stromab nachgewiesen, was die Bestimmung absoluter Reaktionsraten erlaubt (Bild 1).

Bei einer Temperatur von 6 K im Inneren des CSR beobachteten die Wissenschaftler, wie die gespeicherten HeH⁺-Ionen innerhalb von einigen zehn Sekunden durch Strahlungskühlung in den Rotationsgrundzustand übergehen. Während dieses Kühlvorgangs konnten sie die Besetzung der einzelnen Rotationszustände verfolgen und daraus die zustandsabhängigen DR-Wahrscheinlichkeiten extrahieren (Bild 2).

„Wir bestimmen für die niedrigsten Rotationsniveaus von HeH⁺ eine Rekombinationsrate, die bis zu einem Faktor 80 unterhalb der Werte in den bisher verwendeten Datentabellen liegt“, sagt Oldřich Novotný, leitender Wissenschaftler des Experiments. „Der dramatische Rückgang liegt vor allem an den in unseren Labormessungen verwendeten niedrigen Temperaturen. Daraus folgt wiederum eine stark erhöhte Häufigkeit dieses primordialen Moleküls in der Ära der ersten Sternentstehung und Galaxien.“

Die neuen, beispiellos detaillierten Ergebnisse haben hohe Relevanz sowohl für das Verständnis der Reaktion an sich als auch für die Modellierung des frühen Universums. Für die Theorie molekularer Kollisionen ist das HeH⁺-System weiterhin eine Herausforderung. Die neuen Resultate sind hier eine Messlatte für die Berechnungs-Codes.

Aus den experimentellen DR-Reaktionsraten – nunmehr für verschiedene Elektronenenergien und Rotationszustände verfügbar – lassen sich die Umgebungseigenschaften in Modellrechnungen für die Chemie des primordialen Gases ableiten. Diese, wie auch zukünftige Studien am CSR liefern vielfältig anwendbare Daten.

Angesichts des bevorstehenden Starts des James-Webb-Weltraumteleskops kommen die neuen Möglichkeiten der Laborastrophysik gerade zur rechten Zeit, wird doch seine Suche nach den ersten leuchtenden Objekten und Galaxien nach dem Urknall erheblich von verlässlichen Vorhersagen zur Chemie des frühen Universums profitieren.

Wissenschaftliche Ansprechpartner:

Dr. Oldřich Novotný
Tel.: (+49)6221-516-547
E-Mail: oldrich.novotny(at)mpi-hd.mpg.de

Apl. Prof. Dr. Andreas Wolf
Tel.: (+49)6221-516-503
E-Mail: andreas.wolf(at)mpi-hd.mpg.de

Prof. Dr. Klaus Blaum
Tel.: (+49)6221-516-850
E-Mail: klaus.blaum(at)mpi-hd.mpg.de

Originalpublikation:

Quantum state selective electron recombination studies suggest enhanced abundance of primordial HeH⁺
Oldřich Novotný, Patrick Wilhelm, Daniel Paul, Ábel Kálosi, Sunny Saurabh, Arno Becker, Klaus Blaum, Sebastian George, Jürgen Göck, Manfred Grieser, Florian Grussie, Robert von Hahn, Claude Krantz, Holger Kreckel, Christian Meyer, Preeti M. Mishra, Damian Muell, Felix Nuesslein, Dmitry A. Orlov, Marius Rimmler, Viviane C. Schmidt, Andrey Shornikov, Aleksandr S. Terekhov, Stephen Vogel, Daniel Zajfman, Andreas Wolf
Science, 18. Juli 2019, DOI: 10.1126/science.aax5921

Weitere Informationen:

https://www.mpg.de/13364729/heliumhydrid-im-al [1] Molekül vom Ursprung des Universums (Forschungsmeldung der MPG)
https://www.mpi-hd.mpg.de/blaum/index.de.html [2] Abteilung gespeicherte und gekühlte Ionen am MPIK
https://arxiv.org/abs/1606.01525 [3] The Cryogenic Storage Ring CSR

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Dank Tomographie-Weltrekord kann man mit Synchrotronstrahlung zuschauen, wie Metall aufgeschäumt wird
21.08.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Sternenstaub im antarktischen Schnee liefert Hinweise auf die Umgebung des Sonnensystems
21.08.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantencomputer sollen tragbar werden

Infineon Austria forscht gemeinsam mit der Universität Innsbruck, der ETH Zürich und Interactive Fully Electrical Vehicles SRL an konkreten Fragestellungen zum kommerziellen Einsatz von Quantencomputern. Mit neuen Innovationen im Design und in der Fertigung wollen die Partner aus Hochschulen und Industrie leistbare Bauelemente für Quantencomputer entwickeln.

Ionenfallen haben sich als sehr erfolgreiche Technologie für die Kontrolle und Manipulation von Quantenteilchen erwiesen. Sie bilden heute das Herzstück der...

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: "Qutrit": Komplexe Quantenteleportation erstmals gelungen

Wissenschaftlern der Österreichischen Akademie der Wissenschaften und der Universität Wien ist es gemeinsam mit chinesischen Forschern erstmals gelungen, dreidimensionale Quantenzustände zu übertragen. Höherdimensionale Teleportation könnte eine wichtige Rolle in künftigen Quantencomputern spielen.

Was bislang nur eine theoretische Möglichkeit war, haben Forscher der Österreichischen Akademie der Wissenschaften (ÖAW) und der Universität Wien nun erstmals...

Im Focus: Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Informatik-Tagung vom 26. bis 30. August 2019 in Aachen

21.08.2019 | Veranstaltungen

Wie smarte Produkte Unternehmen herausfordern

20.08.2019 | Veranstaltungen

Innovationen der Luftfracht: 4. Air Cargo Conference in Frankfurt am Main

20.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Informatik-Tagung vom 26. bis 30. August 2019 in Aachen

21.08.2019 | Veranstaltungsnachrichten

Proteinaggregation: Zusammenlagerung von Proteinen nicht nur bei Alzheimer und Parkinson relevant

21.08.2019 | Biowissenschaften Chemie

Das Schulbuch wird digital

21.08.2019 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics