Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

cfaed-Forscher der TU Dresden sind Dotierung organischer Halbleiter auf die Spur gekommen

13.03.2018

Eine Gruppe von Physikern vom cfaed an der TU Dresden konnte gemeinsam mit Forschern aus Japan in einer Studie zeigen, wie sich die Dotierung organischer Halbleiter simulieren und experimentell überprüfen lässt. Die Studie wurde nun in „Nature Materials“ veröffentlicht.

Das Dotieren bezeichnet in der Halbleitertechnik das gezielte Einbringen von Fremdatomen (auch Dotanden genannt) in eine Schicht oder in das Halbleitermaterial eines integrierten Schaltkreises. Diese Dotanden sind beabsichtigte „Störungen“ im Halbleiter, mit denen sich das Verhalten der Elektronen und damit die elektrische Leitfähigkeit des Ausgangsmaterials gezielt steuern lässt.


Atomares Strukturmodell eines Clusters des dotierten Halbleiters C60 mit Benzimidazolin-Dotand (Darstellung der Atome im Kugel-Stab-Modell)

S. Schellhammer/ F. Ortmann


Dr. Frank Ortmann, cfaed Independent Research Group Leader

cfaed / Jürgen Lösel

Schon geringste Mengen davon können einen sehr starken Einfluss auf die elektrische Leitfähigkeit haben. Dotierung verleiht Halbleitern ihre Funktionalität in allen wichtigen elektronischen Bauelementen und bildet somit das Rückgrat der Elektronikindustrie.

Obwohl das Prinzip der Dotierung von konventionellen Halbleitern bereits 1950 von dem US-Physiker John Robert Woodyard beschrieben wurde, gibt es bis heute Unklarheiten über Vorgänge beim Dotieren organischer Halbleiter. Dies ist darauf zurückzuführen, dass sowohl die Dotanden als auch das Halbleitermaterial aus Molekülen bestehen und die Dotiereffizienz von verschiedenen Effekten beeinflusst wird, die noch nicht gut verstanden sind.

Eine Gruppe von Physikern der TU Dresden um den cfaed-Forschungsgruppenleiter Dr. Frank Ortmann (Computational Nanoelectronics Group) konnte nun in einer Studie zeigen, wie sich verschiedene Dotiereigenschaften simulieren und anschließend experimentell überprüfen lassen.

Dafür wurden die Zustandsdichte und die Position des Ferminiveaus der prototypischen Materialien C60 und Zinkphthalocyanin, welche mit hocheffizienten Benzimidazolin-Radikalen (2-Cyc-DMBI) n-dotiert wurden, simuliert und in direkter und inverser Photoemissions-Spektroskopie experimentell bestimmt.

Diese Arbeit mit Kollaborationspartnern aus Japan und mit den cfaed-Partnern Prof. Karl Leo (Professur für Optoelektronik) und Prof. Gianaurelio Cuniberti (Professur für Materialwissenschaft und Nanotechnik) von der TU Dresden wurde nun in der renommierten Fachzeitschrift „Nature Materials“ veröffentlicht.

Die Wissenschaftler untersuchen darin die Rolle von elektronischen Zuständen in der Bandlücke, die durch das Dotieren erzeugt wurden. Insbesondere identifizierten sie den energetischen Unterschied Δ zwischen der Elektronenaffinität des undotierten Moleküls und dem Ionisationspotential seines dotierten Gegenstücks (in der Nähe von Dotanden) als Schlüsselparameter für effiziente Dotierung.

„Dieser Parameter ist kritisch für die Erzeugung von freien Ladungsträgern und beeinflusst damit die Leitfähigkeit der dotierten Filme“, so Ortmann. „Strategien zur Optimierung der elektronischen Eigenschaften organischer Halbleiter können durch die Veränderung des Wertes von Δ untersucht und charakterisiert werden.“

Titel der Arbeit: “Insight into doping efficiency of organic semiconductors from the analysis of the density of states in n-doped C60 and ZnPc” (Nature Materials)
DOI: 10.1038/s41563-018-0030-8
Autoren: Christopher Gaul, Sebastian Hutsch, Martin Schwarze, Karl Sebastian Schellhammer, Fabio Bussolotti, Satoshi Kera, Gianaurelio Cuniberti, Karl Leo, Frank Ortmann

Über die Computational Nanoelectronics Group: Die Forschungsgruppe am Center for Advancing Electronics Dresden (cfaed) unter Leitung von Dr. Frank Ortmann erforscht elektronische Eigenschaften und Ladungstransporteigenschaften neuartiger Halbleitermaterialien. Hierbei sind organische Halbleiter aktuell ein wichtiger Schwerpunkt der Arbeit, die durch die Deutsche Forschungsgemeinschaft im Rahmen des Emmy Noether-Programms gefördert wird. Die Gruppe ist seit 2017 am cfaed angesiedelt.

Informationen für Journalisten:
Dr. Frank Ortmann
Technische Universität Dresden
Center for Advancing Electronics Dresden
Tel.: +49 (0) 351 463-43260
E-Mail: frank.ortmann@tu-dresden.de

Matthias Hahndorf
cfaed, Leitung Wissenschaftskommunikation
Tel.: +49 (0) 351 463-42847
E-Mail: matthias.hahndorf@tu-dresden.de

cfaed
Zum Exzellenzcluster für Mikroelektronik an der Technischen Universität Dresden gehören elf Forschungsinstitute, darunter die Technische Universität Chemnitz sowie zwei Max-Planck-Institute, zwei Fraunhofer-Institute, zwei Leibniz-Institute und das Helmholtz-Zentrum Dresden-Rossendorf. Auf neun verschiedenen Pfaden forschen rund 300 Wissenschaftler nach neuartigen Technologien für die elektronische Informationsverarbeitung. Sie verwenden dabei innovative Materialien wie Silizium-Nanodrähte, Kohlenstoff-Nanoröhren oder Polymere. Außerdem entwickeln sie völlig neue Konzepte, wie den chemischen Chip oder Herstellungsverfahren durch selbstassemblierende Strukturen, bspw. DNA-Origami. Ziele sind zudem Energieeffizienz, Zuverlässigkeit und das reibungslose Zusammenspiel der unterschiedlichen Bauelemente. Darüber hinaus werden biologische Kommunikationssysteme betrachtet, um Inspirationen aus der Natur für die Technik zu nutzen. Dieser weltweit einzigartige Ansatz vereint somit die erkenntnisgetriebenen Naturwissenschaften und die innovationsorientierten Ingenieurwissenschaften zu einer interdisziplinären Forschungsplattform in Sachsen.

www.cfaed.tu-dresden.de

Kim-Astrid Magister | Technische Universität Dresden

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics