Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Cäsium-Dampf hilft bei der Suche nach Dunkler Materie

07.10.2019

Physiker der JGU grenzen Suchbereich für Dunkle Materie weiter ein

Die Suche nach Dunkler Materie ist eine der spannendsten Herausforderungen der Grundlagenphysik des 21. Jahrhunderts. Die Forscher wissen seit Langem, dass es sie geben muss, denn ohne sie lassen sich viele astrophysikalische Beobachtungen nicht erklären.


Experimenteller Aufbau zur Atomspektroskopie mit Cäsium-Dampf

Foto: Dionysis Antypas

Beispielsweise bewegen sich die Sterne weit schneller, als sie es tun dürften, wenn nur "normale" Materie existieren würde.

Insgesamt macht die uns bekannte sichtbare Materie nur maximal 20 Prozent der gesamten Materie im Universum aus – während ganze 80 Prozent der Dunklen Materie zuzurechnen sind. "Es steht sinnbildlich ein großer Elefant im Raum – und wir sehen ihn nicht", erläutert Prof. Dr. Dmitry Budker, Wissenschaftler am Exzellenzcluster PRISMA+ der Johannes Gutenberg-Universität Mainz (JGU) und am Helmholtz-Institut Mainz (HIM), die Herausforderung, vor der er und viele seiner Kolleginnen und Kollegen weltweit stehen.

Dunkle Materie könnte aus extrem leichten Teilchen bestehen

Bisher weiß jedoch niemand, woraus die Dunkle Materie besteht. In der Fachwelt wird eine ganze Reihe möglicher Teilchen, die als Kandidaten theoretisch in Frage kommen, diskutiert und erforscht. Als einer der vielversprechenden Kandidaten gelten heute sogenannte extrem leichte bosonische Teilchen.

"Diese können wir auch als klassisches Feld ansehen, das mit einer bestimmten Frequenz oszilliert. Wie groß diese – und demzufolge die Masse der Teilchen – ist, wissen wir aber nicht", so Budker. "Unsere Grundannahme ist, dass dieses Dunkle Materie-Feld an die sichtbare Materie ankoppelt und dabei bestimmte, eigentlich konstante Eigenschaften der Atome sehr subtil verändert."

Mit seiner Mainzer Arbeitsgruppe hat Budker nun eine neue Methode entwickelt, die in der aktuellen Ausgabe der renommierten Fachzeitschrift Physical Reviews Letters beschrieben ist. Sie beruht auf der Atomspektroskopie und beobachtet einen Dampf aus Cäsium-Atomen. Die Atome lassen sich mit Laserlicht einer ganz bestimmten Wellenlänge anregen. Diese Wellenlänge sollte sich minimal verändern, sobald der Cäsium-Dampf an ein Feld aus Dunkle-Materie-Teilchen ankoppelt.

"Grundsätzlich liegt unserer Arbeit immer ein spezielles theoretisches Modell zugrunde, dessen Hypothesen wir experimentell überprüfen", ergänzt der Erstautor der Veröffentlichung, Dr. Dionysis Antypas.

"Hier arbeiten wir mit dem sogenannten Relaxion-Modell, das unsere Kollegen und Ko-Autoren am Weizmann Institut in Israel entwickelt haben." Die Relaxion-Theorie besagt, dass es in der Nähe großer Massen wie der Erde einen Bereich geben muss, in dem die Dichte an Dunkler Materie größer und demzufolge die Kopplungseffekte einfacher zu beobachten und aufzuspüren sind.

Bisher unzugänglichen Frequenzbereich abgesucht

Mit ihrer neuen Methode haben die Wissenschaftler jetzt einen bisher unerforschten Frequenzbereich zugänglich gemacht, in dem sich im Rahmen der Relaxion-Theorie die Auswirkungen bestimmter Formen der Dunklen Materie auf die atomaren Eigenschaften des Cäsium verhältnismäßig deutlich zeigen sollten. Auch erlauben die Ergebnisse den Forschern, neue Einschränkungen in Bezug auf die Natur dieser Dunklen Materie zu formulieren. Wobei Prof. Dr. Dmitry Budker die akribische Spurensuche gern mit dem Bild des Tigers in der Wüste veranschaulicht.

"In dem Frequenzbereich, den wir in unserer aktuellen Arbeit durchsucht haben, hat sich die Dunkle Materie bisher nicht zu erkennen gegeben – aber immerhin wissen wir nun, nachdem wir diesen Bereich durchkämmt haben, dass wir dort nicht weitersuchen müssen." Übertragen auf den Tiger bedeutet das, dass die Forscher zwar immer noch nicht wissen, in welchem Teil der Wüste der Tiger ist, aber sehr wohl, in welchem Teil er nicht ist. "So grenzen wir den Teil der Wüste, in dem der Tiger sein kann, immer weiter ein. Und irgendwann werden wir ihn auf diese Weise finden", ist Budker überzeugt.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dmitry Budker
Quantum, Atomic and Neutron Physics (QUANTUM)
Institut für Physik und Exzellenzcluster PRISMA+
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-29630
E-Mail: budker@uni-mainz.de
https://budker.uni-mainz.de/

Originalpublikation:

D. Antypas et al., Scalar Dark Matter in the Radio-Frequency Band: Atomic-Spectroscopy Search Results, Physical Review Letters 123, 141102 (2019),
DOI: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.141102

Weitere Informationen:

http://www.uni-mainz.de/presse/aktuell/9704_DEU_HTML.php

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weltweit erste Herstellung des Materials Aluminiumscandiumnitrid per MOCVD
22.10.2019 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

nachricht Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie
22.10.2019 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungen

Serienfertigung von XXL-Produkten: Expertentreffen in Hannover

22.10.2019 | Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungsnachrichten

Studenten entwickeln einen Koffer, der automatisch auf Schritt und Tritt folgt

22.10.2019 | Innovative Produkte

Chemikern der Universität Münster gelingt Herstellung neuartiger Lewis-Supersäuren auf Phosphor-Basis

22.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics