Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

BRIDLE – brillante Diodenlaser für die Industrie auf Rekordkurs

17.08.2016

Extrem energieeffiziente und leistungsfähige Diodenlaser für die Industrie wurden unter maßgeblicher Beteiligung des Ferdinand-Braun-Instituts im europäischen Projekt BRIDLE entwickelt. Es gab dabei gleich mehrere Rekorde zu vermelden.

Der Markt für Industrielaser wächst schnell, und benötigt ständig verbesserte Strahlquellen. Bislang war man häufig auf Faser-, Festkörper- oder Kohlendioxidlaser angewiesen, die zwar die not-wendige Leistungsdichte und Brillanz erreichen, aber zugleich viel Energie verbrauchen; sie haben lediglich eine maximale Effizienz von ca. 35 bis 40%.


Der Direkt-Diodenlaser in Aktion: Rostfreier Stahl von 1 Millimeter Dicke wird mit 10 Zentimetern pro Sekunde geschnitten. Die Qualität entspricht der von Faserlasern gleicher Ausgangsleistung.

Foto: Fraunhofer ILT


Die neue Generation der FBH-Diodenlaser – bringt hohe Effizienz bei zugleich hoher optischer Ausgangsleistung.

Foto: FBH/schurian.com

Das seit 2012 von der EU geförderte Projekt BRIDLE (High Brilliance Diode Lasers for Industrial Applications – hochbrillante Diodenlaser für industrielle Anwendungen) sollte deshalb die europäische Industrie in diesem weltweiten Wettlauf zur Entwicklung von kompakten und zugleich hocheffizienten Lasern unterstützen.

Angestrebt wurden Fortschritte sowohl in den Halbleiter- als auch optischen Technologien, etwa durch die Kombination von verschiedenen Wellenlängen in einem Chip (Strahlkombination). „Ziel war es, ein Maximum an Leistung mit höchster Effizienz in einen hochbrillanten Laserstrahl einzubringen“, sagt Dr. Paul Crump vom Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH).

„Diodenlaser haben dafür das beste Potenzial, weil sie die energieeffizienteste Laserstrahlquelle und damit sehr umweltfreundlich sind.“ Solche Diodenlaser werden bereits heute als Pumpquellen für größere Laser eingesetzt. Ziel ist es, die kleinen Diodenlaser direkt zur Materialbearbeitung in hochbrillanten Anwendungen wie etwa zum Schneiden von Stahl einzusetzen.

BRIDLE-Projekt-Koordinator Thomas Brand sprach denn auch von großartigen Fortschritten, die zu Rekord-Resultaten bei etlichen der von Crumps Arbeitsgruppe am FBH neu entwickelten Diodenlaser-Designs geführt hätten. Das Epitaxie-Design wurde verbessert und die Prozessierung so optimiert, dass die bisherige Standardbreite von 100 Mikrometern (µm) der emittierenden Schicht auf 30 µm reduziert werden konnte – ohne größere Abstriche bei Effizienz und Leistung. Dadurch lässt sich die Brillanz des Laserstrahls gegenüber dem bisherigen Stand der Technik verdoppeln, was zu einer besseren Fokussierung auf einen winzigen Punkt führt und damit das Schneiden von Metallen deutlich verbessert.

Das FBH entwickelte auch neue Chipstrukturen, mit denen sich der Strahl effizient und kostengünstig kombinieren lässt. Dafür wurde in die hochbrillanten schmalen DFB-Diodenlaser ein neuartiges monolithisches Gitter eingebracht, das die Wellenlänge stabilisiert und optimiert. Damit ist es erstmals möglich, in einem brillanten Strahl gleichzeitig ein schmales Spektrum (<1 nm), eine hohe Leistung (5 W) und einen hohen Wirkungsgrad (50%) zu realisieren. Zudem wurden mehrere Laserstreifen mit nah beieinander liegenden, abgestuften Wellenlängen in einen Chip integriert. Solche Quellen sind für die spektrale Strahlkombination und Leistungsskalierung in Materialbearbeitungssystemen besonders vorteilhaft.

Ein weiterer Ansatz beruhte auf Diodenlasern mit internen trapezförmigen Strahlfiltern. Sie erreichen schon heute eine besonders hohe Brillanz. Ihre Umwandlungseffizienz wurde durch BRIDLE deutlich von ca. 30% auf über 40% verbessert. Das reicht allerdings noch nicht aus, um sie in der industriellen Materialbearbeitung einzusetzen. Zudem ist der technische Aufwand für die Bündelung der Strahlen etwas höher. Trotz der noch bestehenden Hindernisse wurden bei den Trapezlasern wesentliche Fortschritte in der Grundlagenforschung hinsichtlich neuartiger Ansätze bei der brillanten kohärenten Strahlkombination erzielt, die in Kooperation zwischen FBH, LCFIO und ILT weiter vorangetrieben werden sollen. Crump und seine Kollegen sind davon überzeugt, dass eine weitere Effizienz- und Leistungssteigerung bei Trapezlasern möglich ist.

„Da die europäischen Länder höhere Löhne als beispielsweise in Asien zahlen, haben wir von Anfang an auch die kosteneffiziente Serienfertigung berücksichtigt“, sagt Crump. „Auch in diesem Bereich haben wir sehr wertvolle Erkenntnisse gewonnen.“

Vor allem in der Bearbeitung von Metallen – schweißen, schneiden oder bohren – hofft die Industrie auf hochbrillante und leistungsstarke Diodenlaser, da sie besonders umweltfreundlich arbeitende, kompakte Systeme ermöglichen. Bisherige Industrielaser erzeugen den Strahl wenig energieeffizient in aufwendig zu kühlenden großen Apparaten, aus denen der Strahl via Glasfaserkabel zum Werkstück übertragen werden muss. Mit den im BRIDLE-Projekt entwickelten Diodenlasern wird nun die für die Industrie wichtige Brillanz erreicht.

Ein Laser gilt dann als brillant, wenn sein Strahl über eine Distanz von einem Meter auf einen winzigen Punkt von nur 0,1 Millimeter fokussiert werden kann. Die BRIDLE-Partner demonstrierten mit einem 1-kW-Laserkopf, dass das direkte Schneiden von Stahl möglich ist. Solche Systeme sind für kompakte und energieeffiziente Lasermodule besonders geeignet.

Diodenlaser wandeln Energie besser als jedes andere System in Licht um. Sie sind zudem preiswert in der Massenproduktion, da sie zu Tausenden auf einem Wafer prozessiert werden und sich in kleine und besonders zuverlässige Module integrieren lassen. „Wir sind dabei, die hervorragenden Resultate von BRIDLE noch weiter zu verbessern – für einen schnellen Transfer in die Industrie“, sagt Crump. Die am FBH entwickelten Diodenlaser ermöglichten einen technologischen Vorsprung, der für den Weltmarkt entscheidend sei.

Kontakt
Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Petra Immerz, M.A.
Referentin Kommunikation & Public Relations
Tel. 030.6392-2626
Fax 030.6392-2602
E-Mail: pr@fbh-berlin.de
Web: www.fbh-berlin.de

Hintergrundinformationen
BRIDLE - sieben Projektpartner aus fünf europäischen Ländern
BRIDLE wird von der Firma DILAS Diodenlaser GmbH aus Mainz koordiniert. Forschungspartner sind die Universität Nottingham (Großbritannien), das Fraunhofer ILT, das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) in Berlin, das Laboratoire Charles Fabry des Institut d’Optique (LCFIO) des CNRS (Frankreich) sowie die Unternehmen Modulight (Finnland) und Bystronic (Schweiz). Gefördert wurde das Pro-jekt mit 3 Mio. Euro von der Europäischen Kommission im Rahmen des „Information and Communication Technologies“-Programm (7. Rahmenprogramm).

Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Optoelektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Innovationen in den gesellschaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Lasersysteme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwendungsfelder reichen von der Medizintechnik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satellitenkommunikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunksysteme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Die enge Zusammenarbeit des FBH mit Industriepartnern und Forschungseinrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt 290 Mitarbeiter und hat einen Etat von 26 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. und ist Mitglied der Leibniz-Gemeinschaft.

Weitere Informationen:

http://www.bridle.eu
http://www.fbh-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

nachricht Mission BepiColombo: Jenaer Sensor hilft, Geheimnisse des Merkur zu entschlüsseln
19.10.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics