Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Über das Bremsverhalten von Schwarzen Löchern

04.06.2010
Mit einem "Anti-Kick" erklären Forscher, weshalb sich die Geschwindigkeit nach der Kollision solcher Objekte plötzlich verringert

Gekickt wird nicht nur im Fußball: Wenn etwa Schwarze Löcher einander so nahe kommen, dass sie zusammenstoßen und verschmelzen, dann erfährt das resultierende Schwarze Loch einen Rückstoß und schießt mit einer Geschwindigkeit von bis zu einigen tausend Kilometern pro Sekunde weiter durchs All. Manchmal aber verringert sich das Tempo plötzlich - ein Verhalten, für das es bisher keine Erklärung gab. Nun haben Forscher des Max-Planck-Instituts für Gravitationsphysik das Rätsel gelöst: Es handelt sich um eine Art Rückstoß in die entgegengesetzte Richtung, der die Gesamtgeschwindigkeit herabsetzt. In diesem "Anti-Kick" strahlt das Schwarze Loch Gravitationswellen ab und erreicht so seine energetisch optimale Form: die Kugel. (Physical Review Letters, 3. Juni 2010)


Gekicke im Weltraum: Forscher haben am Computer die Kollision von Schwarzen Löchern nachgestellt (1). Dabei zeigte sich, dass das neu entstandene Schwarze Loch zunächst deformiert ist (2). Um diese Asymmetrie auszugleichen und die energetisch günstigere Kugelform zu erreichen, wird mehr Impuls nach oben abgegeben: Dieser \"Anti-Kick\" bremst das Schwarze Loch etwas ab - es bewegt sich jetzt mit verringerter Geschwindigkeit weiter (3). Bild: MPI für Gravitationsphysik

Von außen betrachtet, ist ein Schwarzes Loch kein fassbares Objekt, sondern eine Raumregion, die mit großer Kraft Materie aus der Umgebung anzieht. Die Grenze zwischen dieser Region und dem restlichen Weltall heißt Horizont. Im einfachsten Fall ist er wie eine Kugeloberfläche geformt, die im Raum schwebt. Was von außen durch diese Oberfläche tritt, kann sie nicht mehr verlassen. Nicht einmal Licht vermag einer solchen Schwerkraftfalle zu entkommen - daher der Name. Schwarze Löcher gelten als wichtige Bausteine von Modellen, mit denen Astrophysiker die Entwicklung der Sterne oder die Aktivitäten im Innern von Galaxienkernen erklären.

Luciano Rezzolla, Leiter der Gruppe Numerische Relativitätstheorie am Max-Planck-Institut für Gravitationsphysik (Albert-Einstein Institut, AEI), sowie seine Kollegen Rodrigo Macedo und José Luis Jaramillo haben in ihrer Arbeit zunächst ein einfaches System untersucht. Darin bewegen sich ein kleineres und ein großes Schwarzes Loch linear aufeinander zu und stoßen frontal zusammen. Das kleinere Schwarze Loch bewegt sich schneller, hat einen Impuls nach unten und strahlt starke Gravitationswellen ab. Da jede Aktion auch eine Gegenreaktion erzeugt, bewegt sich das Gesamtsystem aber nach oben - das ist der "Kick" (Abbildung, links).

Das entstehende Schwarze Loch ist zunächst nicht vollkommen rund, sondern deformiert und hat im oberen Teil eine Art Beule (Abbildung, Mitte). Um diese Asymmetrie auszugleichen und die energetisch günstigere Kugelform zu erreichen, wird mehr Impuls nach oben abgegeben und zunächst werden auch mehr Gravitationswellen nach oben abgestrahlt: Dieser "Anti-Kick" bremst das resultierende Schwarze Loch etwas ab. Es bewegt sich also weiterhin nach oben, allerdings mit verringerter Geschwindigkeit (Abbildung, rechts).

"Dieses einfache Modell bringt uns im Verständnis der Kollision von Schwarzen Löchern einen großen Schritt weiter. In unserer Veröffentlichung bieten wir eine intuitive Erklärung für einen Prozess, dessen mathematische Behandlung extrem kompliziert ist", sagt Luciano Rezzolla. "In der Physik ist es wichtig, komplexe Phänomene zu verstehen und anschauliche Erklärungen zu liefern. Darin liegt die Bedeutung der Forschungsergebnisse von Rezzolla und seinem Team", ergänzt Bernard F. Schutz, Direktor der Abteilung Astrophysikalische Relativitätstheorie.

Gibt es beim Zusammenstoß Schwarzer Löcher einen starken Rückstoß, so hat das einen direkten Einfluss auf die Astrophysik: Denn je nachdem, wie mächtig der "Kick" ist, kann das Schwarze Loch auch aus der Galaxie herausfliegen. Auf diese Weise bestimmt die Stärke des Rückstoßes die Anzahl von Galaxien, die Schwarze Löcher enthalten. Die Erklärung des "Anti-Kicks" wiederum erlaubt es, die Physik in der Nähe eines solchen exotischen Objekts zu erforschen, indem man die Geometrie seines Horizonts untersucht. Außerdem könnte dieser Ansatz grundlegende Aspekte der physikalischen Natur von Schwarzen Löchern selbst erhellen.

Originalveröffentlichung:

Luciano Rezzolla, Rodrigo P. Macedo, José Luis Jaramillo
Understanding the "anti-kick" in the merger of binary black holes
Physical Review Letters, 3. Juni 2010
Weitere Informationen erhalten Sie von:
Dr. Elke Müller (Pressesprecherin)
Max-Planck-Institut für Gravitationsphysik, Potsdam
Tel.: + 49 331 567-7303
E-Mail: elke.mueller@aei.mpg.de
Prof. Dr. Luciano Rezzolla
Max-Planck-Institut für Gravitationsphysik, Potsdam
Tel.: + 49 331 567-7246
E-Mail: luciano.rezzolla@aei.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics