Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Breakthrough Watch und Europäische Südsternwarte suchen mit NEAR nach Planeten um Alpha Centauri

11.06.2019

Pressemitteilung der Europäischen Südsternwarte (Garching) - Das neu gebaute Planetenentdeckungs-Instrument NEAR von Breakthrough Watch und Europäischer Südsternwarte, installiert am Very Large Telescope in Chile, hat First Light und beginnt mit der 100-stündigen Beobachtung der nahegelegenen Sterne Alpha Centauri A und B mit dem Ziel erstmals einen bewohnbaren Exoplaneten direkt zu abzubilden.

Breakthrough Watch, das globale astronomische Programm zur Suche nach erdähnlichen Planetenbei sonnennahen Sternen, und die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO), Europas führende zwischenstaatliche astronomische Organisation, haben heute bekanntgegeben, dass ein neu gebautes Planetenentdeckungs-Instrument am Very Large Telescope der ESO in der chelinischen Atacama-Wüste sein erstes Licht gesehen hat.


NEAR am Hauptteleskop 4 des VLT.

Foto: ESO/NEAR Collaboration

Das Instrument mit dem Namen NEAR (Near Earths in the AlphaCen Region) wurde entwickelt, um im benachbarten Sternsystem Alpha Centauri nach Exoplaneten innerhalb der "habitablen Zonen" seiner beiden sonnenähnlichen Sterne zu suchen, auf denen Wasser möglicherweise in flüssiger Form vorhanden sein könnte. NEAR wurde in den letzten drei Jahren entwickelt und in Zusammenarbeit mit der University of Uppsala in Schweden, der University of Liège in Belgien, dem California Institute of Technology in den USA und Kampf Telescope Optics in München gebaut.

Seit dem 23. Mai führen ESO-Astronomen am Very Large Telescope (VLT) der ESO einen zehntägigen Beobachtungslauf durch, um die An- oder Abwesenheit eines oder mehrerer Planeten in dem Sternsystem festzustellen. Die Beobachtungen werden morgen, am 11. Juni, abgeschlossen. Planeten in dem System, die doppelt so groß wie die Erde oder größer sind, wären mit der verbesserten Instrumentierung erkennbar. Der Nah- bis Thermalinfrarotbereich ist hierbei von besonderer Bedeutung, da er der von einem Kandidatenplaneten abgestrahlten Wärme entspricht, so dass Astronomen bestimmen können, ob die Temperatur des Planeten flüssiges Wasser zulässt.

Alpha Centauri ist das nächstgelegene Sternsystem zu unserem Sonnensystem und 4,37 Lichtjahre (etwa 41 Billionen Kilometer) entfernt ist. Es besteht aus zwei sonnenähnlichen Sternen, Alpha Centauri A und B, sowie dem roten Zwergstern Proxima Centauri. Unser aktuelles Wissen über die Planetensysteme von Alpha Centauri ist gering: Im Jahr 2016 entdeckte ein Team mit ESO-Instrumenten einen erdähnlichen Planeten in einer Umlaufbahn um Proxima Centauri. Aber Alpha Centauri A und B bleiben unbekannte Größen; es ist nicht klar, wie stabil solche Doppelsternsysteme für erdähnliche Planeten sind, und der vielversprechendste Weg, um festzustellen, ob sie um diese nahen Sterne herum existieren, ist der Versuch, sie zu beobachten.

Die Abbildung solcher Planeten ist jedoch eine große technische Herausforderung, da das Sternlicht, das von ihnen reflektiert wird, in der Regel Milliarden Mal schwächer ist als das Licht, das direkt von ihren Muttersternen zu uns kommt. Die Auflösung eines kleinen Planeten in unmittelbarer Umgebung seines Sterns in einer Entfernung von mehreren Lichtjahren lässt sich mit der Beobachtung einer Motte vergleichen, die eine Straßenlaterne in Dutzenden von Kilometern Entfernung umkreist.

Um dieses Problem zu lösen, starteten Breakthrough Watch und ESO 2016 eine Zusammenarbeit zum Bau eines speziellen Instruments, ein sogenannter thermischer Infrarot-Koronograf, der den größten Teil des vom Stern kommenden Lichts blockiert und der optimiert wurde, um das von der warmen Oberfläche eines umlaufenden Planeten emittierte Infrarotlicht einzufangen und nicht die geringe Menge an Sternlicht, die er reflektiert.

So wie Objekte in der Nähe der Sonne (die sonst von ihr vollkommen überstrahlt sind) während einer totalen Sonnenfinsternis sichtbar werden, erzeugt der Koronograf eine Art künstliche Finsternis seines Zielsterns, blockiert sein Licht und ermöglicht es dadurch, deutlich schwächere Objekte in seiner Umgebung zu erkennen. Dies stellt einen bedeutenden Fortschritt in den Möglichkeiten zur Beobachtung dar.

Der Koronograf wurde an einem der vier 8-Meter-Teleskope des VLT installiert, wobei das vorhandene VISIR-Instrument modifiziert und erweitert wurde, um seine Empfindlichkeit für infrarotes Licht zu optimieren, das im Zusammenhang mit potenziell bewohnbaren Exoplaneten steht. Der Koronograf wird daher in der Lage sein, nach Wärmesignaturen ähnlich denen der Erde zu suchen, die Energie von der Sonne absorbiert und im thermischen Infrarot abgibt.

NEAR modifiziert das bestehende VISIR-Instrument in dreifacher Hinsicht und kombiniert mehrere hochmoderne astronomische Ingenieurleistungen: Erstens passt es das Instrument für die Koronografie an, so dass es das Licht des Zielsterns drastisch reduzieren und damit die Signaturen potenziell erdähnlicher Planeten aufdecken kann.

Zweitens verwendet es eine Technik namens adaptive Optik, um den Sekundärspiegel des Teleskops strategisch zu verformen und durch die Erdatmosphäre bewirkte Unschärfe zu kompensieren. Drittens verwendet es neuartige Strategien, die auch das Rauschen reduzieren und es dem Instrument ermöglichen, schnell zwischen den Zielsternen zu wechseln - und zwar alle 100 Millisekunden - wodurch die verfügbare Teleskopzeit maximiert wird.

Pete Worden, Geschäftsführer von Breakthrough Initiatives, sagt: "Wir freuen uns, mit der ESO bei der Entwicklung, dem Bau, der Installation und dem Einsatz dieses innovativen neuen Instruments zusammenzuarbeiten. Wenn es erdähnliche Planeten um Alpha Centauri A und B herum gibt, ist das eine bedeutende Neuigkeit für alle auf unserem Planeten."

"Die ESO freut sich, ihr Fachwissen, ihre bestehende Infrastruktur und die Beobachtungszeit am Very Large Telescope in das NEAR-Projekt einzubringen", kommentiert ESO-Projektmanager Robin Arsenault.

"Das ist eine wertvolle Gelegenheit, denn das NEAR-Experiment ist - neben seinen eigenen wissenschaftlichen Zielen - auch ein Wegbereiter für zukünftige Instrumente zur Planetensuche für das kommende Extremly Large Telescope", erläutert Markus Kasper, leitender ESO-Wissenschaftler für NEAR.

"NEAR ist das erste und (derzeit) einzige Projekt, das einen bewohnbaren Exoplaneten direkt abbilden könnte. Es ist ein wichtiger Meilenstein. Wir hoffen, dass ein großer bewohnbarer Planet Alpha Cen A oder B umkreist", kommentiert Olivier Guyon, leitender Wissenschaftler bei Breakthrough Watch.

"Menschen sind von Natur aus Entdecker", sagt Yuri Milner, Gründer von Breakthrough Initiatives. "Es wird Zeit, dass wir herausfinden, was hinter dem nächsten Tal liegt. Dieses Teleskop wird uns einen Blick darauf werfen lassen."
Weitere Informationen

Die Daten des NEAR-Experiments sind im ESO-Archiv unter der Programm-ID 2102.C-5011 öffentlich zugänglich. Ein vorverarbeitetes und komprimiertes Paket aller Daten wird kurz nach Abschluss der Kampagne zur Verfügung gestellt. Darüber hinaus wurde das Python-basierte Datenreduktionstool PynPoint für Hochkontrast-Bilddaten an die Verarbeitung von NEAR-Daten angepasst und wird Mitgliedern der astronomischen Gemeinschaft zur Verfügung gestellt, die die Daten verwenden möchten, aber keine eigenen Datenreduktionstools haben: https://pynpoint.readthedocs.io/en/latest/near.html

Breakthrough Watch ist ein globales astronomisches Programm, das darauf abzielt, Planeten um benachbarte Sterne herum zu identifizieren und zu charakterisieren. Das Programm wird von einem internationalen Team von Experten für Nachweis und Abbildung von Exoplaneten durchgeführt: https://breakthroughinitiatives.org/initiative/4

Die Breakthrough Initiatives sind eine Reihe von wissenschaftlichen und technologischen Programmen, die von Juri Milner gegründet wurden und das Leben im Universum untersuchen. Zusammen mit Breakthrough Watch gehören dazu Breakthrough Listen, die größte astronomische Suche nach Anzeichen für intelligentes Leben jenseits der Erde, und Breakthrough Starshot, der erste bedeutende Versuch, eine Raumsonde zu entwerfen und zu entwickeln, die einen anderen Stern erreichen kann.

https://breakthroughinitiatives.org

Juri Milner gründete 1999 die Mail.ru-Group und entwickelte sie unter seiner Führung zu einem der führenden europäischen Internetunternehmen. Er ging damit 2010 an die Börse und gründete DST Global, um sich auf globale Internetinvestitionen zu konzentrieren. DST Global wurde zu einem der weltweit führenden Technologieinvestoren und sein Portfolio umfasst einige der weltweit bekanntesten Internetunternehmen wie Facebook, Twitter, WhatsApp, Snapchat, Airbnb, Spotify, Alibaba und andere. Milner lebt mit seiner Familie im Silicon Valley.

Milner schloss sein Studium 1985 in theoretischer Physik ab und forschte anschließend im Bereich Quantenfeldtheorie. Milner und seine Frau Julia haben zusammen mit Sergey Brin, Priscilla Chan und Mark Zuckerberg, Pony Ma und Anne Wojcicki die Breakthrough Prizes finanziert - die weltweit größten wissenschaftlichen Auszeichnungen, die wichtige, primär kürzlich erzielte Leistungen in den Bereichen Grundlegende Physik, Biowissenschaften und Mathematik würdigen. Im Juli 2015 startete Milner zusammen mit Stephen Hawking die 100-Millionen-Dollar-Initiative Breakthrough Listen, um die Suche nach außerirdischer Intelligenz im Universum wiederzubeleben. Im April 2016 starteten sie Breakthrough Starshot - ein 100-Millionen-Dollar-Forschungs- und Entwicklungsprogramm zur Entwicklung einer Technologie für interstellares Reisen.

http://www.yurimilner.com

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Die Organisation hat 16 Mitgliedsländer: Belgien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Irland, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Hinzu kommen das Gastland Chile und Australien als strategischer Partner. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist außerdem einer der Hauptpartner bei zwei Projekten auf Chajnantor, APEX und ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das Extremely Large Telescope (ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Das Very Large Telescope (VLT) der ESO hat kürzlich seine Reihe modernster Instrumente um das überarbeitete VISIR-Instrument (VLT Imager and Spectrometer for mid-Infrared, etwa "VLT-Kamera und Spektrometer für mittlere Infrarotwellenlängen") erweitert. Am 21. Mai 2019 machte es die ersten Beobachtungen seit der Modifikation, um die Suche nach potenziell bewohnbaren Planeten im Alpha-Centauri-System zu unterstützen.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Wissenschaftliche Ansprechpartner:

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org

Janet Wootten
Rubenstein Communications, Inc.
New York, USA
Tel: +1 212 843 8024
E-Mail: jwootten@rubenstein.com

Mariya Lyubenova
Head of ESO Media Relations Team
Garching bei München, Germany
Tel: +49 89 3200 6188
E-Mail: pio@eso.org

Weitere Informationen:

https://www.eso.org/public/germany/news/eso1911/?lang - Webversion der Pressemitteilung mit weiteren Bildern

https://www.eso.org/sci/publications/messenger/archive/no.169-sep17/messenger-no... - Details zu NEAR in The Messenger

https://breakthroughinitiatives.org/ - Webseiten von Breakthrough Initiatives

https://pynpoint.readthedocs.io/en/latest/near.html - Datenreduktions-Werkzeug PynPoint

Dr. Carolin Liefke - ESO Science Outreach Network | Max-Planck-Institut für Astronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht So heiß wie im Inneren der Sonne
05.06.2019 | Friedrich-Schiller-Universität Jena

nachricht Staubige Plasmen in Parabelflügen
05.06.2019 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Bandscheibe auf dem Prüfstand - Eine Million Euro für Forscher der Uni Ulm aus dem EU-Großprojekt „iPSpine“

Rückenschmerzen sind nicht nur leidvoll, sondern auch sehr kostspielig: Allein in der Europäischen Union belaufen sich die ökonomischen Kosten bei „Lower Back Pain“ (LBP) auf über 240 Milliarden Euro jährlich. Die EU fördert ein europäisches Großprojekt, das radikal neue Wege bei der Therapie von degenerierten Bandscheiben geht. "iPSpine“ setzt auf die Verbindung von innovativen Biomaterialien mit stammzellbasierten Ansätzen.

Zu den 20 Projektpartnern gehört auch die Uni Ulm sowie die Ulmer Ausgründung SpineServ. Ihr Auftrag: die Entwicklung von Hard- und Software, um natürliches...

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Advanced Electronic Packaging in kleiner Stückzahl jetzt auch individuell und kostengünstig verfügbar

Das Fraunhofer IZM schließt sich der Plattform EUROPRACTICE IC Service an: Gemeinsam machen die Partner das Fan-out Wafer Level Packaging (FOWLP) für elektronische Bauelemente auch in kleiner Stückzahl verfügbar und bezahlbar – und damit für Forschungsinstitute, Universitäten und KMUs interessant. Indem bis zu zehn Kunden ein individuelles Fan-out Wafer Level Packaging für ihre ICs oder anderen Komponenten auf einem Multi-Project Wafer realisieren, können die Kosten deutlich reduziert werden. Zielgruppe sind alle, die nicht in Massen produzieren, sondern Prototypen benötigen.

Forschen heißt immer auch: Ausprobieren und Neues wagen. Forschungsinstitute, Universitäten und KMUs produzieren nicht in Massen, sondern innovative Prototypen...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

Im Focus: Das fliegende „V“

Student der TU Berlin erfand ein futuristisches, energiesparendes Flugzeug – nun wird es gebaut

Als er 2015 seine Abschlussarbeit an der TU Berlin schrieb und ein Praktikum bei Airbus in Hamburg absolvierte, hatte TU-Student Justus Benad eine „verrückte...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aktuelles aus der Robotik steht im Mittelpunkt einer internationalen Konferenz in Kaiserslautern

11.06.2019 | Veranstaltungen

100. Deutscher Röntgenkongress 2019 – gelebte Einheit in Vielfalt

07.06.2019 | Veranstaltungen

Institut für Rettungsingenieurwesen und Gefahrenabwehr (IRG) präsentiert Drohne zur Ortung von Verschütteten

07.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Bandscheibe auf dem Prüfstand - Eine Million Euro für Forscher der Uni Ulm aus dem EU-Großprojekt „iPSpine“

11.06.2019 | Biowissenschaften Chemie

Lernen in virtuellen Räumen

11.06.2019 | Bildung Wissenschaft

Wie sich Säuren im ultrakalten interstellaren Raum verhalten

11.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics