Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Forscher ergründen komplizierte Kräfte in Atomkernen

20.04.2010
Bonner Wissenschaftler haben ein elementares Problem der theoretischen Physik gelöst: Sie haben die komplizierten Wechselwirkungen in einem mittelgroßen Atomkern zuverlässig berechnet.

Voraussichtlich können sie bald auch die Kerne von sehr großen, noch gar nicht gefundenen Atomen vorhersagen. Ihre Studie in Zusammenarbeit mit dem Forschungszentrum Jülich und der North Carolina State University wurde in dem Fachmagazin "Physical Review Letters" veröffentlicht.

Nach einer knappen Woche spuckte der Großrechner JUGENE am Forschungszentrum Jülich das Ergebnis aus: die Energiewerte von fünf Atomkernen. Und siehe da, die Rechenergebnisse stimmten mit den realen Werten überein. Die neue Rechenmethode des Bonner Physikers Professor Dr. Ulf-G. Meißner und seiner Kollegen hat somit die komplexen Wechselwirkungen innerhalb der Atomkerne richtig erfasst. Fünf mittelgroße Kerne hatten die Forscher unter die Lupe genommen, darunter das Gas Helium, das Metall Lithium und den universell vorkommenden Kohlenstoff.

"Wir sind ein altbekanntes Problem in der Physik angegangen, nämlich: Wie kann man den Aufbau von Atomkernen verstehen?" erläutert Professor Meißner. Atomkerne sind faszinierende Gebilde; in ihnen sind sehr viele kleine Bausteine auf aller engstem Raum zusammengepresst. Die Kernbausteine, Protonen und Neutronen, wechselwirken auf vielfältige Weise miteinander und untereinander: Zum Teil stoßen sie sich ab, hauptsächlich herrscht zwischen ihnen aber eine ungeheure Anziehungskraft, die "starke Wechselwirkung". Und diese Kraft ist anders als alle anderen Kräfte, die Physiker kennen.

"Die starke Wechselwirkung lässt sich nicht über normale physikalische Modelle beschreiben", sagt Professor Meißner. "Sie ist einfach zu kompliziert." Daher ließen sich größere Atomkerne bisher nicht zuverlässig berechnen, denn je mehr Bausteine desto komplexer die Kräfte im Inneren der Kerne. Vergleichbar ist das mit einem Straßenbahnnetz: Je mehr Linien in der Stadt verkehren, desto mehr Kreuzungspunkte gibt es und desto schwieriger ist es auch, die Fahrpläne zu erstellen.

Neues Verfahren, um Atomkerne zu berechnen

Die Forscher haben jetzt erstmals zwei Methoden miteinander vereint und so ein neues Verfahren entwickelt, um Atomkerne zu berechnen. Sie gingen von einer recht jungen physikalischen Theorie aus, die die Kräfte zwischen zwei und drei Bausteinen beschreibt. Viele dieser Bausteine packten die Forscher dann virtuell im Computer zu größeren Kernen zusammen und ließen den Rechner die Gesamtheit aller Wechselwirkungen berechnen. Der Kern von Kohlenstoff setzt sich beispielsweise aus 12 Bausteinen zusammen.

Ein gewöhnlicher Computer schafft diese Rechenaufgabe nicht mehr. Daher haben Professor Meißner und seine Kollegen den Großrechner JUGENE am Forschungszentrum Jülich mit ihrem Modell gefüttert; der errechnete die Bindungsenergien der fünf Atomkerne. "Dass die Ergebnisse mit den bekannten Energiewerten übereinstimmen, zeigt, dass unser neues Verfahren funktioniert", sagt der Physiker.

Endziel ist es, noch viel größere Kerne zu berechnen ? Kerne, die so komplex sind, dass sie in der Natur gar nicht existieren oder so schnell zerfallen, dass sie nicht beobachtet werden können. Atomkerne mit mehr als einigen 100 Bausteinen sind so instabil, dass sie auseinander fliegen. Forscher versuchen weltweit, solche supergroßen Kerne künstlich zu erzeugen und ihre Eigenschaften zu untersuchen. Das neue Rechenverfahren der Bonner Forscher wird ihnen dabei helfen: Denn zu wissen, wonach man sucht, vereinfacht die Suche erheblich. "Mit unserer Methode sollten sich auch sehr instabile Kerne präzise berechnen lassen", hofft Prof. Meißner, "und somit auch deren Eigenschaften vorhersagen lassen. Wir können dann sagen, ob ein beliebiger Atomkern stabil ist, wie groß er ist und wie er sich verhält."

Prof. Meißner und seine Kollegen planen fest, solche supergroßen Kerne bald zu berechnen. "Allerdings wird es noch ein paar Jahre dauern, bis unser Verfahren genügend verfeinert ist", sagt er.

Die Studie erschien am 8. April in dem Fachmagazin "Physical Review Letters": E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Lattice effective field theory calculations for A = 3,4,6,12 nuclei, Physical Review Letters, 2010.

Kontakt:
Prof. Dr. Ulf-G. Meißner
Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn
Telefon: 0228/73-2365
E-Mail: meissner@itkp.uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Atomkern Baustein Energiewert JUGENE Kohlenstoff Physik Wechselwirkung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Komet C/2020 F3 (NEOWISE) mit bloßem Auge am Abendhimmel sichtbar
13.07.2020 | Max-Planck-Institut für Astronomie

nachricht Kosmische Katastrophe bestätigt Einsteins Relativitätstheorie
10.07.2020 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Ansatz für Gentherapie gegen Herzschwäche

13.07.2020 | Studien Analysen

Komet C/2020 F3 (NEOWISE) mit bloßem Auge am Abendhimmel sichtbar

13.07.2020 | Physik Astronomie

Verbesserte Prüfverfahren für sichere Batteriesysteme

13.07.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics