Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Forscher ergründen komplizierte Kräfte in Atomkernen

20.04.2010
Bonner Wissenschaftler haben ein elementares Problem der theoretischen Physik gelöst: Sie haben die komplizierten Wechselwirkungen in einem mittelgroßen Atomkern zuverlässig berechnet.

Voraussichtlich können sie bald auch die Kerne von sehr großen, noch gar nicht gefundenen Atomen vorhersagen. Ihre Studie in Zusammenarbeit mit dem Forschungszentrum Jülich und der North Carolina State University wurde in dem Fachmagazin "Physical Review Letters" veröffentlicht.

Nach einer knappen Woche spuckte der Großrechner JUGENE am Forschungszentrum Jülich das Ergebnis aus: die Energiewerte von fünf Atomkernen. Und siehe da, die Rechenergebnisse stimmten mit den realen Werten überein. Die neue Rechenmethode des Bonner Physikers Professor Dr. Ulf-G. Meißner und seiner Kollegen hat somit die komplexen Wechselwirkungen innerhalb der Atomkerne richtig erfasst. Fünf mittelgroße Kerne hatten die Forscher unter die Lupe genommen, darunter das Gas Helium, das Metall Lithium und den universell vorkommenden Kohlenstoff.

"Wir sind ein altbekanntes Problem in der Physik angegangen, nämlich: Wie kann man den Aufbau von Atomkernen verstehen?" erläutert Professor Meißner. Atomkerne sind faszinierende Gebilde; in ihnen sind sehr viele kleine Bausteine auf aller engstem Raum zusammengepresst. Die Kernbausteine, Protonen und Neutronen, wechselwirken auf vielfältige Weise miteinander und untereinander: Zum Teil stoßen sie sich ab, hauptsächlich herrscht zwischen ihnen aber eine ungeheure Anziehungskraft, die "starke Wechselwirkung". Und diese Kraft ist anders als alle anderen Kräfte, die Physiker kennen.

"Die starke Wechselwirkung lässt sich nicht über normale physikalische Modelle beschreiben", sagt Professor Meißner. "Sie ist einfach zu kompliziert." Daher ließen sich größere Atomkerne bisher nicht zuverlässig berechnen, denn je mehr Bausteine desto komplexer die Kräfte im Inneren der Kerne. Vergleichbar ist das mit einem Straßenbahnnetz: Je mehr Linien in der Stadt verkehren, desto mehr Kreuzungspunkte gibt es und desto schwieriger ist es auch, die Fahrpläne zu erstellen.

Neues Verfahren, um Atomkerne zu berechnen

Die Forscher haben jetzt erstmals zwei Methoden miteinander vereint und so ein neues Verfahren entwickelt, um Atomkerne zu berechnen. Sie gingen von einer recht jungen physikalischen Theorie aus, die die Kräfte zwischen zwei und drei Bausteinen beschreibt. Viele dieser Bausteine packten die Forscher dann virtuell im Computer zu größeren Kernen zusammen und ließen den Rechner die Gesamtheit aller Wechselwirkungen berechnen. Der Kern von Kohlenstoff setzt sich beispielsweise aus 12 Bausteinen zusammen.

Ein gewöhnlicher Computer schafft diese Rechenaufgabe nicht mehr. Daher haben Professor Meißner und seine Kollegen den Großrechner JUGENE am Forschungszentrum Jülich mit ihrem Modell gefüttert; der errechnete die Bindungsenergien der fünf Atomkerne. "Dass die Ergebnisse mit den bekannten Energiewerten übereinstimmen, zeigt, dass unser neues Verfahren funktioniert", sagt der Physiker.

Endziel ist es, noch viel größere Kerne zu berechnen ? Kerne, die so komplex sind, dass sie in der Natur gar nicht existieren oder so schnell zerfallen, dass sie nicht beobachtet werden können. Atomkerne mit mehr als einigen 100 Bausteinen sind so instabil, dass sie auseinander fliegen. Forscher versuchen weltweit, solche supergroßen Kerne künstlich zu erzeugen und ihre Eigenschaften zu untersuchen. Das neue Rechenverfahren der Bonner Forscher wird ihnen dabei helfen: Denn zu wissen, wonach man sucht, vereinfacht die Suche erheblich. "Mit unserer Methode sollten sich auch sehr instabile Kerne präzise berechnen lassen", hofft Prof. Meißner, "und somit auch deren Eigenschaften vorhersagen lassen. Wir können dann sagen, ob ein beliebiger Atomkern stabil ist, wie groß er ist und wie er sich verhält."

Prof. Meißner und seine Kollegen planen fest, solche supergroßen Kerne bald zu berechnen. "Allerdings wird es noch ein paar Jahre dauern, bis unser Verfahren genügend verfeinert ist", sagt er.

Die Studie erschien am 8. April in dem Fachmagazin "Physical Review Letters": E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Lattice effective field theory calculations for A = 3,4,6,12 nuclei, Physical Review Letters, 2010.

Kontakt:
Prof. Dr. Ulf-G. Meißner
Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn
Telefon: 0228/73-2365
E-Mail: meissner@itkp.uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Atomkern Baustein Energiewert JUGENE Kohlenstoff Physik Wechselwirkung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics