Blicke in die Kinderstube unseres Sonnensystems

Ist unser Sonnensystem ein ganz „normales“ oder weist es im Vergleich mit anderen ungewöhnliche Eigenschaften auf? Dieser Frage geht die Deutsche Forschungsgemeinschaft (DFG) bei ihrem Schwerpunktprogramm „The first 10 Million years of the solar system“ nach, das im vorigen Jahr gestartet wurde.

Einer Wissenschaftlergruppe der Friedrich-Schiller-Universität Jena ist es jetzt gelungen, daraus Drittmittel in Höhe von etwa 450.000 Euro einzuwerben. Das Geld sichert die Beteiligung Jenaer Wissenschaftler an diesem DFG-Schwerpunktprogramm für zwei Jahre. Der Startschuss für die Arbeit fällt in diesen Tagen.

„Beteiligt sind die Astrophysiker mit der Beobachtergruppe und der Labor-Astrophysik sowie das Institut für Festkörperphysik“, sagt Prof. Dr. Ralph Neuhäuser, der den Lehrstuhl für Astrophysik an der Friedrich-Schiller-Universität innehat. Insgesamt können fünf Wissenschaftler für zunächst zwei Jahre eingestellt werden, außerdem wurden Reise- und Sachmittel bewilligt. „Darunter sind gut 100.000 Euro für Arbeiten mit unserem Teleskop in Großschwabhausen, für das wir erstmals DFG-Drittmittel einwerben konnten“, betont Neuhäuser. Dieser Erfolg freue ihn besonders, weil die Sternwarte in Großschwabhausen in den letzten Jahren saniert und restauriert wurde. Ein lohnendes Unterfangen, wie sich jetzt gezeigt hat.

Für ihr Forschungsvorhaben beschreiten die Jenaer Wissenschaftler zwei Wege: Sie beobachten zum einen „junge“ Sonnensysteme – das sind solche, die jünger als zehn Millionen Jahre alt sind. Und sie untersuchen zum anderen Material aus der Frühzeit unseres Sonnensystems. In den Fokus der Labor-Astrophysiker rücken deshalb Asteroiden und Kometen. „Meteorite enthalten Material aus dem Weltraum, das so alt ist wie unser Sonnensystem“, sagt Dr. Harald Mutschke. Der Astrophysiker wird zusammen mit einem neuen Doktoranden Proben solcher 4,56 Milliarden Jahre alten Materialien im Labor untersuchen. Analysiert werden beispielsweise die optischen Eigenschaften der enthaltenen Minerale bei Temperaturen bis zu 800 Grad Celsius. „Das entspricht den Temperaturen, wie sie in den Sonnensystemen herrschen, die unsere Kollegen beobachten“, sagt Mutschke. Aus dem Vergleich erhoffen sich die Wissenschaftler neue Einblicke in die Frühzeit unseres Sonnensystems.

Ralph Neuhäuser sagt, die „jungen“ Sonnensysteme seien zwischen 100 und 400 Lichtjahre von der Erde entfernt, also relativ enge Nachbarn der Erde. Neben den eigenen Beobachtungen in Großschwabhausen werden Daten an der europäischen Südsternwarte in Chile aufgenommen und ausgewertet. Die Universität Jena kooperiert bei diesen Projekten mit den Universitäten in Rostock, Kiel und Hamburg.

Dr. Cornelia Jäger vom Institut für Festkörperphysik der Jenaer Universität untersucht sogenannte GEMS, das sind häufige, isotopisch abweichende Partikel in Meteoriten. GEMS steht für Glas mit eingebetteten Metall- und Sulfidpartikeln. Es wird vermutet, dass diese GEMS älter sind als unser Sonnensystem – ein Beweis steht indes noch aus. „Wir wollen im Labor mögliche kosmische Bildungsmechanismen von GEMS simulieren“, sagt Dr. Jäger. Die dafür im Labor hergestellten Silikate entsprechen in ihrer chemischen Zusammensetzung annähernd den zirkumstellaren Silikaten. Sie werden im Labor den möglichen kosmischen Szenarios ausgesetzt. Cornelia Jäger weiß, dass diese Magnesium-Eisen-Silikate zu den häufigsten kosmischen Staubkomponenten gehören. Sie werden in den sogenannten zirkumstellaren Hüllen um entwickelte Sterne gebildet und mit dem Sonnenwind dieser Sterne in das interstellare Medium transportiert. Dort können sie sich unter energiereicher UV- und Ionenbestrahlung verändern. Später können diese Staubpartikel wieder in sogenannte Molekülwolken eingebunden werden, die dann Orte für neue Sternentstehung und damit Orte für die Bildung planetarischer Scheiben sind. Die Jenaer Forscher setzen ihre im Labor erzeugten Proben Ionen energiereicher Strahlung aus. Danach werden die Silikate untersucht, um ihre Veränderungen zu verfolgen. „Unsere Ergebnisse sollen die Beziehungen zwischen zirkumstellaren, interstellaren und primitiven Silikaten im Sonnennebel dokumentieren. Und sie werden dazu beitragen, die Natur der Festkörpermaterialien zu erfassen, die am Anfang der Planetenentstehung stehen“, sagt Jäger.

Zusammengefasst lässt sich sagen, dass die Jenaer Wissenschaftler einen Blick in die Kinderstube unseres Sonnensystems werfen werden.

Kontakt:
Prof. Dr. Ralph Neuhäuser / Dr. Harald Mutschke / Dr. Cornelia Jäger
Astrophysikalisches Institut mit Sternwarte der Friedrich-Schiller-Universität Jena
Schillergässchen 2-3, 07745 Jena
Tel.: 03641-947500 / 947533 / 947354
E-Mail: rne[at]astro.uni-jena.de / mutschke[at]astro.uni-jena.de / conny[at]astro.uni-jena.de

Media Contact

Stephan Laudien idw

Weitere Informationen:

http://www.uni-jena.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer