Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Blick ins Innere von Molekülen

10.06.2010
Einem europäischen Forscher-Team ist es erstmals gelungen, Attosekunden-Laserpulse zur Beobachtung von Elektronen in Molekülen zu verwenden. Das berichtet das Fachblatt Nature in seiner Ausgabe vom 10.Juni 2010.

Um eine chemische Reaktion nicht nur beobachten, sondern wirklich verstehen zu können, müssen Wissenschaftler das Verhalten der Elektronen innerhalb von Molekülen kennen. Bislang war es technisch nicht möglich, Elektronen zu beobachten, weil sie sich unvorstellbar schnell bewegen. Nun ist dies einer Gruppe von europäischen Forschern mithilfe von Attosekunden-Laserpulsen gelungen.

Eine Attosekunde ist ein milliardstel einer milliardstel Sekunde. In einer Attosekunde legt Licht weniger als ein millionstel Millimeter zurück – das ist gerade mal der Weg von einem Ende eines kleineren Moleküls zum anderen. Zum Vergleich: In einer Sekunde kann Licht unseren Globus achtmal umrunden. Und genau darum betreiben die Physiker den immensen Aufwand, solche kurzen Laserblitze zu erzeugen: Sie können damit die Bewegung der Elektronen innerhalb eines Moleküls wie in einer Fotoserie „fotografieren“.

In dem europäischen Forscher-Team arbeitete Prof. Marc Vrakking, Direktor am Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin, zusammen mit Gruppen u.a. aus Mailand, Amsterdam, Lund (Schweden), Lyon und Madrid. Mit dabei sind auch Wissenschaftler um Dr. Matthias Kling vom Max-Planck-Institut für Quantenoptik in Garching bei München.

Die Physiker haben zunächst das Wasserstoffmolekül (H2) untersucht – es ist das am einfachsten aufgebaute Molekül mit zwei Protonen und zwei Elektronen. Die Forscher wollten herausfinden, wie genau die Ionisation in einem Wasserstoffmolekül abläuft, bei der ein Elektron aus dem Molekül entfernt wird, und wie sich das verbliebene Elektron innerhalb des Moleküls hinterher neu anordnet. Marc Vrakking erklärt: „Wir konnten in unserem Experiment erstmals zeigen, dass wir mit einem Attosekunden-Laser tatsächlich in der Lage sind, die Bewegung von Elektronen im Molekül zu beobachten. Unser Experiment kann man sich so vorstellen: Zunächst haben wir ein Wasserstoffmolekül mit einem Attosekunden-Laserpuls bestrahlt. Dadurch wird ein Elektron aus dem Molekül herausgelöst – das Molekül wird ionisiert. Gleichzeitig haben wir das Molekül mit einem Infrarot-Laserstrahl in zwei Teile geteilt, wie mit einer winzigen Schere. Nun haben wir uns angesehen, wie sich die Ladung auf die zwei Fragmente verteilt – weil ein Elektron fehlt, ist nun ein Teil neutral und ein Teil positiv geladen. Damit wussten wir, wo sich das verbliebene Elektron befand, nämlich im neutralen Teil.“

Schon seit den 1980er Jahren untersuchen Wissenschaftler Moleküle und Atome mithilfe von Femtosekunden-Lasern – eine Femtosekunde ist ein millionstel einer milliardstel Sekunde, also um das tausendfache „langsamer“ als eine Attosekunde. Damit lassen sich Bewegungen von Atomen und Molekülen nachverfolgen, aber kaum die von Elektronen. 2001 gelang es Forschern erstmals, einen Laserblitz mit einer Länge von 250 Attosekunden zu erzeugen. Zunächst stand die technische Entwicklung der Attosekunden-Laser im Vordergrund sowie deren gezielte Steuerung und Messung. Erst allmählich beginnen Wissenschaftler, sie für naturwissenschaftliche Fragestellungen einzusetzen.

Obwohl die Experimente des europäischen Teams mit Attosekunden-Lasern die erhofften Ergebnisse brachten, gab es für die Wissenschaftler eine Überraschung: Um ihre Messungen noch besser interpretieren zu können, bezogen sie eine Gruppe von Theoretikern von der Universität Madrid in das Projekt ein. Die Arbeit der Spanier brachte völlig neue Erkenntnisse. Dr. Felipe Morales aus Madrid, der mittlerweile am MBI arbeitet, berichtet: „Wir sind mit unseren Rechnerkapazitäten fast an die Grenzen gestoßen, eineinhalb Millionen Stunden Computerrechenzeit haben wir aufgewendet.“ Diese Berechnungen zeigten, dass die Komplexität der Fragestellung weitaus größer ist, als vorher angenommen. „Es hat sich herausgestellt, dass auch doppelt angeregte Zustände, d.h. mit einer Anregung beider Elektronen des Wasserstoffmoleküls, eine wichtige Rolle spielen“, erläutert Matthias Kling. Marc Vrakking beschreibt es so: „Wir haben das Problem nicht gelöst, wie wir zunächst dachten, wir haben lediglich eine Tür geöffnet. Aber das macht das ganze Projekt eigentlich noch viel wichtiger und interessanter.“

Originalveröffentlichung:

G. Sansone, F. Kelkensberg, J. F. Pérez-Torres, F Morales, M.F. Kling, W. Siu,
O.Ghafur, P. Johnsson, M. Swoboda5, E. Benedetti, F. Ferrari, F. Lépine, J. L.
Sanz-Vicario, S. Zherebtso, I. Znakovskaya, A. L’Huillier5, M. Yu. Ivano, M.
Nisoli1, F. Martín, M.J.J. Vrakking
Electron localization following attosecond molecular photoionization
Nature, DOI 10.1038/nature09084
Kontakt
Prof. Dr. Marc Vrakking
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Tel.: +49 30 6392-1200
Fax: +49 30 6392-1209
E-Mail: vrakking@mbi-berlin.de
Dr. Matthias Kling
Max-Planck-Institut für Quantenoptik, Garching
Junior Research Group „Attosecond Imaging“
Tel.: +49 89 32905-234
Fax: +49 89 32905-649
E-Mail: matthias.klingmpq.mpg.de

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.mbi-berlin.de
http://www.fv-berlin.de/pm_archiv/2010/Foto/nature2.jpg
http://www.attoworld.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

nachricht Rätsel gelöst: Das Quantenleuchten dünner Schichten
15.10.2019 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die wahrscheinlich kleinsten Stabmagnete der Welt

17.10.2019 | Biowissenschaften Chemie

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungsnachrichten

Additive Fertigung von Hartmetall-Schneidwerkzeugen

17.10.2019 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics