Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blick in komplexe Lichtwellenformen

31.05.2017

Mit einer neuen Methode lässt sich erstmals erfassen, wie sich das elektrische Feld von schwacher Strahlung bewegt

Einem internationalen Forschungsteam unter der Leitung von Prof. Dr. Giuseppe Sansone vom Physikalischen Institut der Universität Freiburg ist es erstmals gelungen, die komplexe Entwicklung des elektrischen Feldes von schwachen Lichtpulsen vollständig zu charakterisieren. Das Team hat seine Ergebnisse im Fachjournal „Nature Photonics“ veröffentlicht.


Das elektrische Feld bewegt sich in komplexen Bahnkurven, während sich ein Lichtpuls ausbreitet.

Grafik: Giuseppe Sansone

Lichtpulse sind elektromagnetische Wellen. Ihre Eigenschaften wie etwa Schwingungsrichtung, Dauer und Intensität hängen davon ab, wie sich ihr elektrisches und ihr magnetisches Feld räumlich und zeitlich entwickeln.

Diese beiden Vektoren können in komplexen Bahnkurven verlaufen, während sich ein Lichtpuls ausbreitet – sie können sich zum Beispiel entlang eines Kreises drehen, eine Ellipse oder eine beliebige Mischkombination beschreiben. Die Bewegung erfolgt auf der Zeitskala von einigen Hundert Attosekunden, was viel schneller ist, als jedes herkömmliche elektronische oder optoelektronische Messgerät erfassen kann: Eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde.

Um dennoch beobachten zu können, wie sich das elektrische Feld bewegt, hat das Team eine Methode entwickelt, bei der so genannte Attosekunden-Laser zum Einsatz kommen. „Mit diesem neuartigen Werkzeug konnten wir Elektronen als Wellenpakete, die nur wenige Hundert Attosekunden dauern, erzeugen“, erklärt Sansone.

Während ihrer Bewegung sind Elektronen äußerst empfindlich gegenüber äußeren Störungen. Die Wissenschaftlerinnen und Wissenschaftler haben diese Eigenschaft ausgenutzt, um die Bahnkurven der Elektronen mit schwachen sichtbaren Lichtpulsen zu modifizieren. Daraufhin haben sie gemessen, wie sich diese Kurven verändert haben, und daraus die Intensität und die Richtung des elektrischen Feldes abgeleitet.

„Mit unserer Methode wird es in Zukunft möglich sein, eine vollständige Charakterisierung der elektronischen Bewegung in Festkörpern zu erhalten, indem man das von ihrer Oberfläche reflektierte, sichtbare Licht misst“, sagt Sansone.

Forscherinnen und Forscher der Universität Jena, des Max-Planck-Instituts für Kernphysik in Heidelberg, der Physikalisch-Technischen Bundesanstalt in Braunschweig sowie des Politecnico in Mailand und des Istituto di Fotonica e Nanotecnologie in Padua/Italien haben wesentlich zu diesen Ergebnissen beigetragen.

Originalveröffentlichung:
P. A. Carpeggiani et al. (2017): Vectorial optical field reconstruction by attosecond spatial interferometry.
In: Nature Photonics. DOI 10.1038/nphoton.2017.73

Kontakt:
Prof. Dr. Giuseppe Sansone
Physikalisches Institut
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5738
E-Mail: giuseppe.sansone@physik.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2017/blick-in-komplexe-lichtwellenformen?set_l...

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics