Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blasen im Pulsarwind schlagen Funken

22.11.2017

Neuer Mechanismus für flackerndes Gammalicht aus dem Krebsnebel: Für die seit ihrer Entdeckung vor einigen Jahren rätselhaften Ausbrüche hochenergetischer Gammastrahlen aus dem Krebsnebel haben Physiker des Heidelberger MPI für Kernphysik eine neue theoretische Erklärung geliefert. Eine plötzliche Verringerung des Teilchenstroms, der den Pulsarwind des Nebels speist, sorgt für eine induktive Beschleunigung weniger Teilchen, die aber umso höhere Energien aufnehmen. Treffen diese auf die äußeren Bereiche des Nebels, so erzeugen sie die beobachtete kurzzeitige Intensivierung des Gammalichts.
[Physical Review Letters, 21.11.2017]

Der Krebsnebel (M1) ist der Überrest einer spektakulären Supernova, die im Jahre 1054 n. Chr. im Sternbild Stier aufleuchtete. Die Sternexplosion hinterließ im Zentrum den Krebspulsar, einen Neutronenstern von 1,4 bis 2 Sonnenmassen mit einem Durchmesser von nur 10 bis 30 km, der sich sehr schnell (gut 30 Mal pro Sekunde) um seine Achse dreht.


Der Krebsnebel (M1) - Komposit aus Aufnahmen bei verschiedenen Wellenlängen: Infrarot (rot, Spitzer) sichtbares Licht (grün, Hubble), Röntgen (hellblau, Chandra).

Bildquelle: NASA


Schema des Krebsnebels: vom Pulsar ausgehende EM-Wellen (blau) und Pulsarwind (hellblau) mit Blasen geringerer Dichte (weiß). Beschleunigte Teilchen erzeugen an der Schockfront Gammastrahlung (rot).

Grafik: MPIK

Er besitzt ein starkes Magnetfeld, dessen Achse gegenüber der Rotationsachse geneigt ist und so im Magnetfeld gefangene geladene Teilchen mitführt. Aus den zentralen Bereichen geht ein „Pulsarwind“ aus – ein Plasmastrom aus relativistischen Elektronen und ihren Antiteilchen (Positronen). Ihre Energie beziehen sie aus der Rotation des Neutronensterns mit seiner geneigten Magnetosphäre, die wie ein Quirl den Pulsarwind-Nebel durchrührt und hochfrequente elektromagnetische Wellen abstrahlt.

Wo der Pulsarwind in einigen Lichtmonaten Entfernung vom Zentrum auf die äußeren Bereiche des Krebsnebels trifft, bildet sich eine Schockfront. Die auf extrem hohe Energien beschleunigten Elektronen und Positronen produzieren schließlich die ausgedehnte nicht-thermische Strahlung des Krebsnebels. Diese sehr effizienten Prozesse machen ihn zu einer der hellsten Quellen hochenergetischer Gammastrahlung, wobei der Pulsar im hohen und der Nebel vorwiegend im sehr hohen Energiebereich leuchten.

Neben dem regulären Pulsieren der Gammastrahlung, die vom Krebsnebel ausgeht, hat u. a. der Fermi-Satellit in den „Dunkelphasen“ unregelmäßige Eruptionen („Flares“) im hohen Energiebereich – gleichsam ein Flackern des Gammalichts – beobachtet. Diese waren in mehrfacher Hinsicht für die Astrophysiker rätselhaft:

Ihre rasche Variation innerhalb von Stunden schränkt den Ursprung auf ein sehr kleines Gebiet ein, etwa von der Größe unseres Sonnensystems (Lichtstunden), da sich keine Störung schneller als mit Lichtgeschwindigkeit ausbreiten kann. Zudem wurde Gammalicht bei Energien beobachtet, die bis zu viermal über denen liegen, die nach bisherigem Verständnis im Elektron-Positron-Plasma des Pulsarwinds erreicht werden.

John Kirk und Gwenael Giacinti vom Heidelberger Max-Planck-Institut für Kernphysik haben nun mit einem neuen theoretischen Modell einen Mechanismus gefunden, der das beobachtete Spektrum der Gamma-Flares und ihre typische Zeitdauer erklärt. Hierzu nahmen die Forscher an, dass der Pulsarwind in seinem Ursprung nicht kontinuierlich gespeist wird, sondern Fluktuationen aufweist.

Diese bilden „Blasen“ im Plasma mit erheblich geringerer Dichte – bis zu einem Faktor von 1 Million. Die Rechnungen zeigen nun, dass auf dem Weg zur Schockfront die wenigen Teilchen durch Induktion insgesamt die gleiche Energiemenge aufnehmen, aber dafür die Energie pro Teilchen entsprechend höher ist.

Die plötzliche Verringerung der Anzahl von Ladungsträgern wirkt so ähnlich, wie bei einem induktiven Stromkreis die Unterbrechung des Stroms eine Spannungsspitze erzeugt. Dieser Induktionseffekt ist für die bekannten Funken beim Öffnen des Schalters für einen Elektromagneten verantwortlich (Funkeninduktor) – ein Anwendungsbeispiel sind Zündkerzen für Ottomotoren.

Treffen nun diese hochenergetischen Elektronen und Positronen auf die Schockfront, so werden sie dort magnetisch abgelenkt und geben ihre Energie in Form von Synchrotronstrahlung ab, die dann als hochenergetisches Gammalicht beobachtet wird. Die Skizze illustriert diesen Vorgang: Die Plasmablasen starten in einem relativ kleinen Bereich nahe dem Pulsar und breiten sich in einem Sektor durch den Pulsarwind aus, wobei sie sich proportional zur Entfernung aufblähen.

Der von dem blasenhaltigen Sektor getroffene Bereich der Schockfront (rot hervorgehoben) leuchtet dann im Gammalicht auf. Da die Schockfront gekrümmt ist, liegt der exakt in Richtung Erde weisende Bereich etwas näher als dessen Umgebung. Der Unterschied liegt in der Größenordnung von Lichtstunden, was zur beobachteten Zeitstruktur der Gammastrahlung passt. Auch die Form des Spektrums wird durch die neuen Rechnungen gut wiedergegeben.

Das neue Modell sagt auch weitere Eigenschaften der Strahlung voraus, z. B. die Polarisation, also die Schwingungsrichtung des Gammalichts, welche in naher Zukunft gemessen werden könnten. Es legt zudem nahe, dass ähnliche Gamma-Flares auch in anderen Pulsarwind-Nebeln auftreten.

Originalveröffentlichung:
Inductive spikes in the Crab Nebula — a theory of gamma-ray flares
John G. Kirk and Gwenael Giacinti
Physical Review Letters 119, 211101 (2017)

Kontakt:
Apl. Prof. Dr. John Kirk
Tel.: +49 6221-516-482
E-Mail: john.kirk@mpi-hd.mpg.de

Weitere Informationen:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.211101 Originalveröffentlichung
https://www.nasa.gov/mission_pages/GLAST/news/crab-flare.html Video zu den „Superflares“ (englisch, NASA)

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Tanz mit dem Feind
12.12.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Bose-Einstein-Kondensate können Gravitationswellen derzeit wohl kaum nachweisen
12.12.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

ICTM Conference 2019 in Aachen: Digitalisierung als Zukunftstrend für den Turbomaschinenbau

12.12.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Biofilme generieren ihre Nährstoffversorgung selbst

12.12.2018 | Interdisziplinäre Forschung

Tanz mit dem Feind

12.12.2018 | Physik Astronomie

Künstliches Perlmutt nach Mass

12.12.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics