Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysik - Den Ring schließen

27.04.2016

Wie Bakterien sich teilen, ist bisher nicht vollständig klar. LMU-Physiker zeigen jetzt, dass sich Proteine bei hoher Dichte von selbst zu Ringen zusammenschließen können. Sie schnüren die Mutterzelle ein und teilen sie so in Tochterzellen.

Das Abschnüren besiegelt die Trennung: Bakterien vermehren sich mithilfe eines Proteinrings, der sich in der Zellmitte wie ein Gummiband zusammenzieht und die Mutterzelle in zwei Tochterzellen teilt. LMU-Physiker um Erwin Frey, Inhaber des Lehrstuhls für Biologische und Statistische Physik, haben nun mithilfe von mathematischen Modellierungen untersucht, welche Mechanismen die Entstehung dieses sogenannten Z-Rings steuern.


Die Kreisbewegung der gekrümmten Polymere und ihre Kollisionen miteinander führen ab einer bestimmten Teilchenzahl zur Bildung ringförmiger Cluster. Bild: C. Hohmann, NIM

Dabei haben die Forscher einen ganz neuen Mechanismus der Musterbildung entdeckt: Die Simulationen zeigen, dass sich die ringbildenden Proteine von einer gewissen Moleküldichte an von selbst organisieren und zu Ringen zusammenschließen.

„Aus biologischer Sicht ist dies hoch interessant, weil es ein völlig neues Licht auf die bisher nicht verstandene Dynamik der bakteriellen Zellteilung wirft“, sagt Frey. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Physical Review Letters.

Der Z-Ring besteht aus sogenannten FtsZ-Proteinen, die sich zu gekrümmten Polymeren zusammenschließen, wie Experimente auf künstlichen Membranen zeigten. Diese Polymere können ihre Position verändern, indem einzelne Proteinbausteine aktiv umverteilt werden: Am Anfang des Proteins werden neue Bausteine angebaut, während am Polymerende Proteine wieder entfernt werden. Durch diesen sogenannten „Tretmühleneffekt“ scheint das Polymer über die Membran zu kriechen.

„Unter bestimmten Versuchsbedingungen bilden die Polymere nach einiger Zeit Cluster, die sich zu rotierenden Ringen zusammenschließen“, sagt Jonas Denk, gemeinsam mit Lorenz Huber Erstautor der Studie. „Interessanterweise haben diese Ringe in etwa den Durchmesser einer Bakterienzelle“.

Rotierende Cluster

Den Wissenschaftlern gelang es nun, diesen ungewöhnlichen Effekt mithilfe von mathematischen Modellen zu simulieren, die die Krümmung der Polymere und ihre damit verbundene Kreisbewegung berücksichtigen. Als weiterer Parameter ging in die Simulation ein, dass sich die Polymere gegenseitig abstoßen, es also kein „Übereinanderlaufen“ der Polymere gibt. „Unsere zentrale Frage war, welcher Mechanismus die Bildung der ringförmigen Muster antreibt“, sagt Huber.

Die Simulationen haben nun gezeigt, dass die Dichte der Polymere - also die Teilchenzahl - der entscheidende Faktor ist: Sind nur wenige Teilchen vorhanden, gibt es kaum Wechselwirkungen und die einzelnen Polymere bleiben voneinander separiert. Steigt die Teilchenzahl jedoch, kollidieren die Polymere miteinander. Als Folge der Kollisionen und der Kreisbewegung der einzelnen gekrümmten Polymere gruppieren sich die Polymere dann zu Clustern zusammen, die einen dichten rotierenden Ring bilden.

Nach Ansicht der Wissenschaftler legen ihre Ergebnisse nahe, dass auch die Bildung des Z-Rings in Bakterienzellen auf dieser Selbstorganisation der FtsZ-Polymere beruht – dass also die Proteindichte auch in lebenden Zellen die treibende Kraft ist, über die die Zelle die Ringbildung steuert. Ein solches sich selbst antreibendes System wäre ein völlig neuartiger Mechanismus der Ringbildung, der sich grundlegend davon unterscheidet, wie etwa in eukaryotischen Zellen Zellwände abgeschnürt werden:

„Dort sind für diesen Prozess bestimmte Motorproteine essenziell, die sich an die Zellwände anheften und richtig ziehen“, sagt Denk. Zusätzlich zu ihrer biologischen Bedeutung seien diese Ergebnisse auch aus mathematisch-physikalischer Sicht hoch interessant, erklärt Huber: „Die Phänomenologie unseres Modells unterscheidet sich stark von konventionellen Klassen angetriebener oder aktiver Teilchen. Seine mathematische Beschreibung führt zu einer verallgemeinerten Version einer komplexen Gleichung, die im Zusammenhang mit Phänomenen wie der bakteriellen Turbulenz und der Musterbildung in allgemeinen, nichtlinearen Systemen eine Rolle spielt.“
Physical Review Letters 2016

Publikation:
Active Curved Polymers form Vortex Patterns on Membranes
Jonas Denk, Lorenz Huber, Emanuel Reithmann, and Erwin Frey
Physical Review Letters 2016

Kontakt:
Prof. Dr. Erwin Frey
Statistische und Biologische Physik
Tel.: 089 2180 4538 (Sekretariat)
frey@lmu.de
http://www.theorie.physik.uni-muenchen.de/lsfrey/group_frey/index.html

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine kalte Supererde in unserer Nachbarschaft
15.11.2018 | Max-Planck-Institut für Astronomie, Heidelberg

nachricht Die Umgebung macht das Molekül zum Schalter
14.11.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Automatisierte Klebfilmablage und Stringerintegration für den Flugzeugbau

14.11.2018 | Materialwissenschaften

Wie Algen und Kohlefasern die Kohlendioxidkonzentration in der Atmosphäre nachhaltig senken könnten

14.11.2018 | Biowissenschaften Chemie

Was das Meer zur Klimaregulierung beiträgt: Neue Erkenntnisse helfen bei der Berechnung

14.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics