Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bilder wie im wahren Leben

14.12.2010
Mit Laserlichtquellen lassen sich faszinierend echt wirkende Bilder erzeugen. In Flugzeugsimulatoren oder bei Großprojektionen werden sie schon eingesetzt.

Für viele Anwendungen sind sie jedoch noch zu groß. Wissenschaftlern des Ferdinand-Braun-Instituts, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist es jetzt gelungen, besonders kleine, brillante Laserlichtquellen zu entwickeln, die deutlich kompaktere Systeme für Displays ermöglichen.

„Bei dieser Achterbahnfahrt ist mir richtig schlecht geworden“, erinnert sich Dr. Katrin Paschke, Leiterin einer Nachwuchsgruppe am FBH. Dabei saß sie nicht einmal selbst im Wagon, sondern hat die Fahrt nur im Film gesehen. Die besonders realitätsnahen Bilder sind durch eine besondere Projektionstechnik entstanden. „Mit der Laserprojektion decken wir den Farbraum des menschlichen Auges zu neunzig Prozent ab. Die Bildqualität ist dadurch faszinierend. Aktuelle Flachbildschirme im Handel schaffen nur etwa fünfzig Prozent“, erklärt Paschke.

Der Nachteil an den Laserprojektoren ist bisher vor allem, dass sie gewaltige Abmessungen erreichen. In Flugsimulatoren werden schrankgroße Lasersysteme eingesetzt. Das schränkt die Einsatzmöglichkeiten erheblich ein, für den Fernseher zu Hause kommt die Technologie damit noch nicht infrage. Wissenschaftler entwickeln daher immer kleinere Bauteile. Diese Laserlichtquellen sollen zugleich hohe optische Ausgangleistungen im Wattbereich erreichen und eine exzellente Strahlqualität aufweisen.

Katrin Paschke hat mit ihrer Gruppe im Rahmen der BMBF-geförderten Initiative „InnoProfile“ und einem Entwicklungsprojekt mit der Firma LDT Laser Display Technology GmbH aus Jena streichholzschachtelgroße rote Laserlichtquellen entwickelt, die LDT in ihre neue Generation von Laserprojektoren integriert möchte.

In ihrem rot leuchtenden Mikromodul haben die Wissenschaftler am FBH mehrere Elemente wie Laserchip und Mikrooptiken kombiniert. Das rote Licht wird dabei von nur reiskorngroßen Halbleiterlasern direkt erzeugt. Eine der Herausforderungen bei den für Displaysystemen benötigten hohen Leistungen bestand darin, die erheblichen Leistungsdichten so zu reduzieren, dass das Lasermaterial nicht schmilzt. Diese Leistung darf sich daher nicht auf eine zu kleine Austrittsfläche für den Laserstrahl konzentrieren.

Am FBH wurde deshalb ein Laserchip entwickelt, der sich zum Austritt hin trapezförmig öffnet. So kann der Laserstrahl mit guter Strahlqualität kompakt erzeugt und im Trapezteil verbreitert werden, dass die hohen Ausgangsleistungen auf eine vergleichsweise breite Austrittsfläche von einigen hundert Mikrometern verteilt werden. Damit die Strahlung der Lasermodule für Laserprojektoren genutzt werden kann, muss der Strahl anschließend kollimiert, d.h. parallel ausgerichtet werden. Der Strahl, den Halbleiterlaser üblicherweise emittieren, wird nämlich mit zunehmender Entfernung schnell breiter und verliert dadurch an Bestrahlungsstärke.

Das gesamte Modul sollte dabei die Größe einer Streichholzschachtel nicht überschreiten. Deshalb wurden für die Kollimierung speziell angefertigte Mikrooptiken (ca. 1 x 1 x 1 mm³) verwendet, die mit höchster Präzision von unter einem Mikrometer positioniert und fixiert werden müssen. Ein ausgeklügeltes Wärmemanagement sorgt zudem dafür, dass die Diodenlaser im optimalen Temperaturbereich von unter 15°C betrieben werden können. Um die überschüssige Wärme abzuleiten, nutzen die Forscher speziell gefertigte Industriediamanten.

Mit diesen winzig kleinen brillanten Laserlichtquellen will das Team um Katrin Paschke nicht nur dafür sorgen, dass in Planetarien oder Flugsimulatoren gestochen scharfe Bilder erzeugt werden. Künftig sollen auch ins heimische Wohnzimmer lebensechte Bilder mit Laserfernsehern geliefert werden. Katrin Paschke erwartet im Entertainmentbereich sogar noch mehr: „Irgendwann werden Hologramme durch unsere Wohnung springen.“

Pressekontakt:
Petra Immerz
Communications & Public Relations Manager

Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin

Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de
www.fbh-berlin.de


Hintergrundinformationen - das FBH
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der welt­weit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikro­wellen­technik und Opto­elektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Inno­vationen in den gesell­schaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Laser­systeme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwen­dungsfelder reichen von der Medizin­technik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satelliten­kommu­nikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunk­systeme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Kompakte atmosphärische Mikro­­wellen­plasmaquellen mit Nieder­spannungsversorgung entwickelt es für medizinische Anwendungen, etwa zur Behandlung von Hauterkrankungen. Die enge Zusammen­arbeit des FBH mit Industriepartnern und Forschungs­einrichtungen garantiert die schnelle Umsetzung der Ergeb­nisse in praktische Anwendungen. Das Institut beschäftigt 220 Mitarbeiter und hat einen Etat von 21 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. und ist Mitglied der Leibniz-Gemeinschaft.

Petra Immerz | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics