Beschreibung der Berry-Curvature und Chern-Zahlen durch Berechnung von Bloch-Zuständen

Exakt entgegengesetzter transversaler Fluss von Spin-up und Spin-down Elektronen. Der Strom des Spins hingegen ist nicht null und kann als eine diskrete (quantizierte) Größe gemessen werden. Dongbin Shin

Wie Albert Einstein 1936 im Journal of the Franklin Institute schrieb: “Das ewig Unbegreifliche an der Welt ist ihre Begreiflichkeit.“ Aus Sicht der Physik bedeutet dieses “wundersame Begreifen” meistens, dass die beobachteten Phänomene sich anhand der bekannten Naturgesetze durch mathematische Gleichungen erklären lassen.

Andererseits werden sowohl die Notwendigkeit als auch die Objektivität der mathematischen Sprache schon seit Platon und Aristoteles diskutiert. Genau solche Fragen zur Rolle rein mathematischer Formulierungen für die Erforschung physikalischer Phänomene beschäftigen auch die moderne Festkörperphysik, insbesondere in der Charakterisierung der topologischen Eigenschaften von bestimmten nichtleitenden Materialien.

Thouless et. al.¹ haben 1982 die Quantizierung des Hall-Stroms vorhergesagt, insbesondere dass sie mit einer mathematisch hergeleiteten ganzen Zahl (also 1, 2, 3 usw.) beschrieben werden kann, die auf der topologischen Struktur der quantenmechanischen Zustände des Materials basiert.

Kurz darauf entdeckte Michael Berry (1984)², dass diese rein mathematische Zahl in einem Zusammenhang mit der Phase der quantenmechanischen Wellenfunktion steht. Später bewiesen Haldane (1988)³ and Kane und Mele (2005)⁴, dass diese nicht-trivialen typologischen Zahlen in wirklichen Materialien auftreten, wenn in ihren Atomen der Spin der Elektronen mit der Bahn der Elektronen gekoppelt ist.

Diese Charakterisierung von physikalischen Systemen basiert auf rein mathematischen Argumenten. Die Wirklichkeit der typologischen Konstanten, also der erwähnten ganzen Zahlen, zur Klassifizierung von Materialien wird oft bezweifelt, insofern sie überhaupt in einem Experiment beobachtet werden können.

Statt dessen entwickelte das Forschungsteam eine computerbasierte Methode, die den Hall-Strom in nichtleitenden Materialien berechnet. Dabei entdeckten die Wissenschaftler, dass solche Materialien schon durch diesen Strom anstatt der rein mathematisch motivierten typologischen Zahlen klassifiziert werden können.

Durch die Berechnung der zeitabhängigen quantenmechanischen Gleichungen gelang es ihnen, die Geschwindigkeit der Elektronen gemäß Michael Berrys Formulierung zu bestimmen. Wenn diese Geschwindigkeit der Elektronen aufsummiert wird, ergibt sie eine ganze Zahl, mit der man die quantenmechanische Struktur des Materials klassifizieren kann.

So hat das Team gezeigt, dass der Strom, also eine physikalisch messbare Größe, die nicht auf mathematischen Konzepten beruht, verwendet werden kann, um die Eigenschaften von Materialien zu charakterisieren.

REFERENZEN

1 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Physics Review Letters 49, 405 (1982)

2 M. V. Berry, Quantal Phase-Factors Accompanying Adiabatic Changes, Proc. R. Soc. Lon. Ser-A 392, 45 (1984).

3 F. D. M. Haldane, Model for a Quantum Hall-Effect without Landau-Levels-Condensed-Matter Realization of the Parity Anomaly, Physical Review Letters 61, 2015 (1988)

4 C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Physical Review Letters 95, 22 (2005)​

Noejung Park (corresponding author): noejung@unist.ac.kr
Jenny Witt, PR und Öffentlichkeitsarbeit MPSD: jenny.witt@mpsd.mpg.de
Tel.: +49 (0)40 8998 6593

https://www.pnas.org/content/early/2019/02/13/1816904116

Media Contact

Jenny Witt Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Informationen:

http://www.mpsd.mpg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer