Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Besser schwerelos: Warum IPHT-Wissenschaftler einen Hochleistungslaser fallen lassen

11.12.2007
Es klingt verrückt: Die Wissenschaftler des Institutes für Photonische Technologien (IPHT) lassen den einzigen Prototypen ihres hochkomplexen, 400 kg schweren Lasersystems ADL aus 120 Metern Höhe fallen.

Doch die ungewöhnlichen Experimente dienen einem guten Zweck: Sie liefern wichtige Erkenntnisse für die Entwicklung schadstoffärmerer Motoren und besserer Kraftstoffe.

Die Physiker um Dr. Wolfgang Paa können in den nur viereinhalb Sekunden freien Falls mit ihrem Speziallaser Messungen machen, die unter keinen anderen Bedingungen möglich sind. Ziel dieser jetzt erstmals im europaweit einmaligen Fallturm des Bremer Zentrums für Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) geglückten Experimente ist es, mehr über Zünd- und Verbrennungsvorgänge zu erfahren, wie sie in Motoren oder Gasturbinen ablaufen. "Die Schwerelosigkeit bietet uns dafür entscheidende Vorteile", erläutert Paa. "Flammen im freien Fall haben eine vereinfachte Chemie durch weniger Stofftransport sowie eine einfachere geometrische Form als unter normalen Bedingungen, das erleichtert uns die Messungen und die Bewertung der Ergebnisse stark".

Herzstück des Systems ist ein am IPHT Jena weiterentwickelter spezieller Scheibenlaser (englisch "Advanced Disk Laser", ADL). Je nach Anforderung kann die Wellenlänge des von ihm ausgesendeten Laserlichtes exakt eingestellt werden. Dadurch kann man viele verschiedene chemische Substanzen untersuchen, die während einer Verbrennung als Zwischenprodukte entstehen und schließlich in die gasförmigen oder festen Endprodukte umgewandelt werden.

... mehr zu:
»ADL »IPHT »Lasersystem »Schwerelosigkeit

Ein solches Lasersystem ist an sich schon eine technische Meisterleistung. Doch die besondere Herausforderung an die Wissenschaftler des IPHT bestand darin, den ADL für den Einsatz in der Schwerelosigkeit tauglich zu machen. "Unser ursprüngliches System nahm im Labor drei Quadratmeter ein und arbeitete nur auf speziellen schwingungsgedämpften Tischen - so etwas kann und will man natürlich nicht fallenlassen", berichtet Wolfgang Paa. Gemeinsam mit Kollegen vom Institut für Strahlenwerkzeuge der Universität Stuttgart und dem ZARM in Bremen arbeiteten die Mitarbeiter der Abteilung Laserdiagnostik am IPHT finanziell unterstützt von der Deutschen Raumfahrt-Agentur DLR deshalb drei Jahre lang darauf hin, den Laser fit für den Fallturm zu machen.

Die Forscher mussten das System so verkleinern, dass alle Bauelemente auf drei Ebenen mit einem Durchmesser von jeweils 70 Zentimetern angeordnet werden konnten. "Neben der geringen Größe mussten wir auch ein geringes Gewicht und einen minimalen Energieverbrauch gewährleisten, damit das Gerät im Fallen mit Batterien arbeiten kann", erläutert Paa, "und bei alledem musste eine größtmögliche Schockfestigkeit erreicht werden." Anfang 2005 erfolgte dann der erste Abwurf des Lasersystems. Dabei erfuhr der Laser fast völlige Schwerelosigkeit, die Gravitation im Fallturm beträgt nur wenige Millionstel der normalen Erdanziehungskraft.

Der ADL überstand den Fall aus 120 Metern und die Belastung mit dem 35fachen des Eigengewichtes gut und landete mit der hohen Endgeschwindigkeit von 167 km/h sicher in einem acht Meter hohen Behälter mit stecknadelkopfgroßen Styroporkugeln. "Es war schon ein großer Erfolg, dass die Funktionen unseres Lasersystems vom Übergang zur Schwerelosigkeit und der Abbremsung unbeeinflusst blieben", erinnert sich Physiker Paa, "doch bis zu den ersten erfolgreichen Experimenten an Flammen vergingen noch einmal gut zweieinhalb Jahre."

Der für die Fallturmexperimente entwickelte ADL soll sich nun auch in anderen Zusammenhängen bewähren: Er bietet ganz neue Möglichkeiten für die Untersuchung von Verbrennungsprozessen innerhalb von Motoren oder die Prozessoptimierung in Gasturbinenbrennkammern. Denkbar ist auch, dass das System im Weltall zum Einsatz kommt, zum Beispiel in der Internationalen Raumstation ISS.

Ihr Ansprechpartner:
Dr. Wolfgang Paa
Abteilung Laserdiagnostik
Telefon +49 (0) 3641/ 206-411
Telefax +49 (0) 3641/ 206-499
wolfgang.paa@ipht-jena.de

Susanne Liedtke | idw
Weitere Informationen:
http://www.ipht-jena.de
http://www.zarm.uni-bremen.de

Weitere Berichte zu: ADL IPHT Lasersystem Schwerelosigkeit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf die Nähe kommt es an: Wie Kristall den Widerstand von Graphen beeinflusst
28.01.2020 | Georg-August-Universität Göttingen

nachricht Wie man ein Bild von einem Lichtpuls macht
27.01.2020 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnellster hochpräziser 3D-Drucker

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. (DOI: 10.1002/adfm.201907795).

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter...

Im Focus: Wie man ein Bild von einem Lichtpuls macht

Um die Form von Lichtpulsen zu messen, brauchte man bisher komplizierte Messanlagen. Ein Team von MPI Garching, LMU München und TU Wien schafft das nun viel einfacher.

Mit modernen Lasern lassen sich heute extrem kurze Lichtpulse erzeugen, mit denen man dann Materialien untersuchen oder sogar medizinische Diagnosen erstellen...

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Im Focus: Integrierte Mikrochips für elektronische Haut

Forscher aus Dresden und Osaka präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen eine wichtige Voraussetzung für die Entwicklung von elektronischer Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet...

Im Focus: Dresdner Forscher entdecken Mechanismus bei aggressivem Krebs

Enzym blockiert Wächterfunktion gegen unkontrollierte Zellteilung

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lichtgetriebene Nanomotoren - Erfolgreich gekoppelt

28.01.2020 | Biowissenschaften Chemie

Warum Gesunde für Kranke so wichtig sind! – Vergleichsstudie geht Fibromyalgie-Syndrom auf den Grund

28.01.2020 | Biowissenschaften Chemie

Kiss and Run: Wie Zellen ihre Bestandteile trennen und recyceln

28.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics