Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zeitdehnung der Relativitätstheorie Einsteins mit weltweit höchster Genauigkeit gemessen

22.11.2007
Mainzer Quantenphysiker messen Tempo von Lithium-Ionen bei Geschwindigkeiten bis zu 20.000 Kilometern pro Sekunde - Wichtig für genaue GPS-Navigation

Die Zeitdehnung ist einer der faszinierendsten Aspekte der speziellen Relativitätstheorie Einsteins, weil er die Vorstellung einer absolut gültigen Zeit abschafft: Uhren in bewegtem Zustand ticken langsamer.

Im Experiment konnte die Zeitdehnung zum ersten Mal von Ives und Stilwell 1938 mithilfe des Dopplereffekts beobachtet werden. Physikern der Johannes Gutenberg-Universität Mainz ist es nun gelungen, die Zeitdehnung mit bisher nicht erreichter Genauigkeit zu messen.

Die Wissenschaftler verwenden dazu einen Ansatz, der die Speicherung und Kühlung von Lithium-Ionen und die Messung ihrer optischen Frequenzen mit einem Frequenzkamm verbindet. "Die Erforschung der Zeitdehnung ist nicht nur für die Grundlagenphysik von Bedeutung, sondern hat für die satellitengestützte Positionsbestimmung mit GPS und viele andere Anwendungen in der Kommunikationstechnologie eine ganz praktische Funktion", erklärt Univ.-Prof. Dr. Gerhard Huber von der Universität Mainz dazu. Die Arbeit, die in Kooperation mit Wissenschaftlern aus Heidelberg, Garching und Winnipeg entstanden ist, wurde vom Wissenschaftsmagazin Nature Physics online veröffentlicht.

Seit ihrer Einführung 1905 bildet die spezielle Relativitätstheorie Albert Einsteins die Grundlage für alle Beschreibungen physikalischer Vorgänge. Ein wesentliches Prinzip dieser Theorie besagt, dass die Lichtgeschwindigkeit immer konstant bleibt, unabhängig davon, ob sich ein Beobachter mit eigener Geschwindigkeit bewegt oder nicht. Allerdings ist die Zeit in diesem Konzept nun nicht mehr konstant, sondern in einem bewegten System wie beispielsweise einer Rakete im Weltall verlangsamt. Diese Zeitdilatation oder Zeitdehnung wurde 1938 erstmals gemessen und mit einer Genauigkeit von einem Prozent bestimmt. Die jetzt von Nature Physics publizierte Arbeit ist gegenüber dieser ersten Messung 100.000 Mal genauer. "Das ist eine spektakuläre Genauigkeit, die allerdings auch notwendig ist, wenn wir die Grundlagen der Physik, also das Standardmodell testen wollen", so Prof. Gerhard Huber.

Der Mainzer Atomphysiker hat vor etwa 20 Jahren zusammen mit Prof. Dirk Schwalm vom Max-Planck-Institut für Kernphysik in Heidelberg (MPIK Heidelberg) diese Forschungsarbeit am damals neu installierten Speicherring TSR des MPIK begonnen. Dabei werden Lithium-Ionen bei relativistischen Geschwindigkeiten - das sind bis zu sechs Prozent der Lichtgeschwindigkeit oder bis zu 20.000 Kilometer pro Sekunde - als feiner Strahl gespeichert und mit Lasern auf ihren optischen Resonanzen angeregt. Diese sehr scharfen Resonanzen funktionieren wie Atomuhren, die sich mit den Ionen bewegen. Die Laseranregung geschieht mit zwei Lasern, die dem Ionenstrahl hinterher und entgegen geschickt werden. Wenn beide Laser dieselben Ionen anregen, können die Eigenzeit dieser Uhren und zugleich deren Geschwindigkeit im Speicherring genau gemessen werden. Einzig mit der Kenntnis der optischen Frequenzen kann der Faktor der Zeitdehnung, der zugleich die Massenzunahme beschreibt, aus den Experimenten bestimmt werden und mit dem bekannten Wert in der speziellen Relativitätstheorie Einsteins verglichen werden. Die genaue Frequenzmessung geschah in Garching bei München mit einem optischen Frequenzkamm in Zusammenarbeit mit dem Team um Prof. Theodor Hänsch, der 2005 für die Entwicklung dieses bahnbrechenden Verfahrens mit dem Nobelpreis geehrt wurde.

"Innerhalb einer Messgenauigkeit von 1 zu 10 Millionen konnte am TSR Speicherring in Heidelberg die spezielle Relativitätstheorie bestätigt werden", fasst Prof. Huber zusammen. Die Messung reiht sich damit in die Serie der Überprüfung des sogenannten Standardmodells der Physik ein, das die Elementarteilchen und die zwischen ihnen wirkenden Kräfte beschreibt, und die auch den Test der Lorentz-Invarianz, also der Gültigkeit der speziellen Relativität, einschließt. "Allerdings reicht die bislang erreichte Genauigkeit nicht, um bereits Abweichungen zu erkennen." Die Mitarbeiter aus Mainz, Sergei Karpuk und Christian Novotny, arbeiten nun an einem Experiment bei deutlich höheren Geschwindigkeiten, die bei der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt mit dem Speicherring ESR erreicht werden können. In ersten Tests kamen die Ionen hier auf bis zu 34 Prozent der Lichtgeschwindigkeit.

Sascha Reinhardt, Guido Saathoff, Henrik Buhr, Lars A. Carlson, Andreas Wolf, Dirk Schwalm, Sergei Karpuk, Christian Novotny, Gerhard Huber, Marcus Zimmermann, Ronald Holzwarth, Thomas Udem, Theodor W. Hänsch, Gerald Gwinner: Test of relativistic time dilation with fast optical atomic clocks at different velocities. Nature Physics Online-Veröffentlichung 11. November 2007; doi: 10.1038/nphys778

Kontakt und Informationen:
Univ.-Prof. Dr. rer. nat. Gerhard Huber
Quanten-, Atom- und Neutronenphysik (QUANTUM)
Institut für Physik
Johannes Gutenberg-Universität Mainz
Tel. +49 6131 39-25969
E-Mail: Gerhard.Huber@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.quantum.physik.uni-mainz.de/members/alamas/huber.html
http://www.nature.com/nphys/index.html
http://zope.verwaltung.uni-mainz.de/presse/bilder/physik_relativitaetstheorie_mess

Weitere Berichte zu: Relativitätstheorie Zeitdehnung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wendelstein 7-X erreicht Weltrekord
25.06.2018 | Max-Planck-Institut für Plasmaphysik (IPP)

nachricht Schnelle Wasserbildung in diffusen interstellaren Wolken
25.06.2018 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wendelstein 7-X erreicht Weltrekord

Stellarator-Rekord für Fusionsprodukt / Erste Bestätigung für Optimierung

Höhere Temperaturen und Dichten des Plasmas, längere Pulse und den weltweiten Stellarator-Rekord für das Fusionsprodukt hat Wendelstein 7-X in der...

Im Focus: Schnell und innovativ: Jülicher Superrechner ist eine Neuentwicklung aus Europa

Bei der Entwicklung innovativer Superrechner-Architekturen ist Europa dabei, die Führung zu übernehmen. Leuchtendes Beispiel hierfür ist der neue Höchstleistungsrechner, der in diesen Tagen am Jülicher Supercomputing Centre (JSC) an den Start geht. JUWELS ist ein Meilenstein hin zu einer neuen Generation von hochflexiblen modularen Supercomputern, die auf ein erweitertes Aufgabenspektrum abzielen – von Big-Data-Anwendungen bis hin zu rechenaufwändigen Simulationen. Allein mit seinem ersten Modul qualifizierte er sich als Nummer 1 der deutschen Rechner für die TOP500-Liste der schnellsten Computer der Welt, die heute erschienen ist.

Das System wird im Rahmen des von Bund und Sitzländern getragenen Gauß Centre for Supercomputing finanziert und eingesetzt.

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Neueste Entwicklungen in Forschung und Technik

25.06.2018 | Veranstaltungen

Wheat Initiative holt Weizenforscher aus aller Welt an einen Tisch

25.06.2018 | Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wendelstein 7-X erreicht Weltrekord

25.06.2018 | Physik Astronomie

Schnell und innovativ: Jülicher Superrechner ist eine Neuentwicklung aus Europa

25.06.2018 | Informationstechnologie

Leuchtfeuer in der Produktion

25.06.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics