Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtspiele auf dem Mikrochip

19.11.2007
Wissenschaftler bringen Silizium zum Leuchten, indem sie Quanteneffekte nutzen

Die Hersteller von Computerchips lieben Silizium - doch inzwischen platzt es aus allen Nähten. Die Nachfrage nach immer höherer Rechenkapazität ist enorm. Kleiner und schneller würden Prozessoren aus Silizium etwa, wenn sie mit Licht rechnen könnten. Wissenschaftler am Max-Planck-Institut für Mikrostrukturphysik haben nun gleich zwei verschiedene Siliziumdioden zum Leuchten gebracht. Ein Autor der MaxPlanckForschung hat die zwei Verfahren unter die Lupe genommen. In der neusten Ausgabe des Magazins berichtet er, warum Siliziumchips vielleicht schon bald mit viel mehr Bits und Bytes jonglieren können. (MaxPlanckForschung 3/2007)


Hier leuchtet Silizium schon - aber nicht in der Diode, wie sie für die Optoelektronik nötig wäre. Bild: SPL - Agentur Focus

Einige Wissenschaftler hoffen, dass Licht einmal den Platzmangel auf Computerchips beheben kann. Dann sollen Photonen statt Elektronen mit Daten hantieren und so noch mehr Rechenleistung auf engstem Raum ermöglichen. Auf Silizium als Grundlage für Mikrochips möchten die Forscher dabei freilich nicht verzichten. Zu gut beherrscht die Industrie es inzwischen, Transistoren aus diesem Material zu ätzen. Eine Forschungsgruppe am Max-Planck-Institut für Mikrostrukturphysik in Halle hat Silizium jetzt das Leuchten beigebracht, indem sie Quanteneffekte ausnutzt.

Damit ein Material Licht aussendet, müssen seine Elektronen zunächst Energie aufnehmen, die ihnen etwa in Form von elektrischem Strom angeboten werden kann. Dabei hüpfen sie von einem tieferen energetischen Niveau in ein höheres - auf einer Art energetischem Sprungbrett. Von dort lassen sie sich wieder in die Tiefe fallen und geben ihre überschüssige Energie im besten Falle als Licht ab. Aber die Elektronen des Siliziums gelangen nur auf einem Umweg auf das Sprungbrett. Den finden sie nur schwer, so dass Silizium normalerweise nicht leuchtet.

... mehr zu:
»Elektron »Silizium

Einen Trick, um den Elektronen des Siliziums auf die Sprünge zu helfen, beherrschen am Hallenser Max-Planck-Institut Peter Werner, Vadim Talalaev und ihre Mitarbeiter. So haben die Forscher kürzlich eine Leuchtdiode auf der Basis von Halbleitern konstruiert. In ihr stellt Silizium jedoch nur eine Komponente dar: Wie in einem Sandwich haben die Wissenschaftler abwechselnd nanometerdünne Schichten aus Silizium mit einer Prise Antimon und Germanium übereinander gestapelt. Das Germanium-Silizium-Supergitter leuchtet, weil die Elektronen des Siliziums in den benachbarten Germaniumschichten passende Löcher finden, in die sie mit einer Leuchtspur fallen können.

Die Schichten aus Germanium dürfen im Schnitt nicht einmal fünf Nanometer messen, und die aus Silizium auch nicht viel mehr, damit das Supergitter Licht abgibt. "Die Quanteneffekte, die im Nanometerbereich auftreten, machen diese Forschung für uns interessant", sagt Ulrich Gösele, Direktor des Instituts. Einer der Effekte ist, dass die Elektronen benachbarter Siliziumschichten durch die trennende Germaniumebene tunneln. Dabei vollbringen sie ein Kunststück, das nur in der Quantenphysik möglich ist. Sie gehen durch eine Wand. Der Tunneleffekt macht das Silizium-Germanium-Supergitter erst zu einer brauchbaren Lichtquelle. Sandwiches aus dickeren Lagen der beiden Halbleiter leuchten zwar auch, aber nur sehr schwach, weil die Elektronen nur schlecht zu den Löchern im Germanium gelangen. "Eine Siliziumdiode mit unserer Effizienz würde für die Optoelektronik schon reichen", sagt Talalaev und meint damit unter anderem die Hersteller von Computerchips. "Jetzt versuchen wir, daraus einen Laser zu bauen."

Einen Silizium-Laser zu bauen, versucht auch Margit Zacharias, die kürzlich noch eine Forschungsgruppe in Ulrich Göseles Abteilung leitete. Sie setzt dabei auf die Nanotechnologie. Ihre Silizium-Nanokristalle ordnen sich in einem Block von Siliziumdioxid zu einem Muster an, das auf Bildern eines Transmissions-Elektronenmikroskops an eine belgische Waffel erinnert. Doch eigentlich passt der Vergleich mit einem Kirschkuchen besser, denn die Nanokristalle sitzen im in der isolierenden Schicht des Siliziumdioxids wie die Kirschen im Teig. Nur eben viel geordneter, sodass sie wiederum ein Supergitter aus Quantenpunkten formen.

Die Größe der Kristalle ist auch hier entscheidend. "Ich stelle mir das manchmal selber so vor, dass sich die Elektronen und Löcher in den Nanokristallen einfach nicht aus dem Wege gehen können", sagt Zacharias. Da der Abstand so klein ist, finden sie leichter zueinander und geben bei ihrer Begegnung einen Lichtblitz ab. Aber das Siliziumdioxid sperrt als Isolator nicht nur die Elektronen und Löcher in den Nanokristallen ein, es verhindert auch, dass von außen welche in den Kristall eindringen. Das ist ungünstig, wenn Strom die Energie zum Leuchten liefern soll. "Die Löcher und Elektronen müssen also durch die Siliziumdioxidschicht tunneln", sagt Lorenzo Pavesi. Er unterstützt Zacharias von der Universität Trento in Norditalien aus. "Dafür sind die Oxidschichten um die Nanokristalle bislang noch zu dick." Immerhin hat Pavesi aber schon Ideen, die Probleme zu lösen. "Wie wir das machen wollen, kann ich natürlich nicht verraten", sagt er: "Aber die Chancen stehen gut."

Eine ausführliche Version dieses Textes finden Sie im Schwerpunkt der neuesten Ausgabe der MaxPlanckForschung. Unter dem Titel "Neue Materialien" beleuchten wir unter anderem die technischen Möglichkeiten, die in Stoffen aus der Natur schlummern. Max-Planck-Forscher versuchen die Prinzipien der Natur nutzbar zu machen. Die Wissenschaftler gucken bei ihrer Suche nach neuen Werkstoffen, was unter der Oberfläche von Muscheln steckt, und woher Holz seine Stärke nimmt. In dem Beitrag "Das Geheimnis in der Austernschale" schildern wir, wie Schalentiere, Seeigel und Korallen die Ideen zu neuen keramischen Materialien liefern. In "Bäume zeigen Muskeln" erweist sich die Natur als ausgezeichneter Baumeister biegsamer Fasern. Und die Max-Planck-Forscher erweisen sich als ihre Lehrlinge, die nach ihrem Vorbild Glasfaserstoffe für den Flugzeugbau optimieren. Dass die Materialforschung auch von einem Blick zurück profitieren kann, beleuchten wir hingegen in dem Beitrag "Das Metall macht die Musik". Dabei stellen wir Ihnen Metallforscher vor, die aufklären, warum die Orgelpfeifen barocker Baumeister einen so guten Klang erzeugen. Damit Musikliebhaber in Zukunft Orgelkonzerte in der Qualität von Bach und Buxtehude genießen können.

Anlässlich der Nobelpreisverleihung an den Max-Planck-Chemiker Gerhard Ertl entschlüsseln Jürgen Renn und Horst Kant in ihrem Essay "Erfolge Abseits des Mainstreams" das "Erfolgsmodell Max Planck". Sie reflektieren dabei die gegenwärtige Forschungspolitik vor ihrem geschichtlichen Hintergrund.

Die Rubrik "Faszination Forschung" zeigt, dass Forschung auch heute noch durchaus abenteuerlich sein kann. Klimaforscher der Max-Planck-Gesellschaft besteigen in dem Beitrag "Atmosphärenchemie - Luftproben in vollen Zügen" die transsibirische Eisenbahn. Auf dem Weg ins Niemandsland um Wladiwostok untersuchen sie, welche Rolle Waldbrände und Methan-Emissionen in Sibirien beim Klimawandel spielen.

Der Einsamkeit der sibirischen Weiten stellen wir in der Sparte "Wissen aus erster Hand" die Geselligkeit von Einzellern gegenüber. Dass Bakterien sich bisweilen zusammenrotten und sogar einen Fruchtkörper ausbilden, erfordert ein ausgeklügeltes Kommunikationssystem. Erfahren sie, "was sich Einzeller zuflüstern".

Der "Kongressbericht" fasst die Beiträge einer Tagung der International Society of Chemical Ecology (ISCE) in Jena zusammen. Die neuesten Erkenntnisse über die komplexen Beziehungen zwischen Pflanzen, Tieren und Mikroben diskutierten Forscher auf ihrem 23. Jahrestreffen, das das Max-Planck-Institut für chemische Ökologie mitorganisiert hat.

Dass der Nutzen der medizinischen Forschung manchmal auf politische Grenzen trifft, berichtet Tim Schröder in der Rubrik "Forschung und Gesellschaft". Sein Beitrag "Der harte Weg ins Trockene" schildert, wie der erfolgreichen Langzeittherapie für Alkoholabhängige "ALITA" der Finanzhahn zugedreht wird.

In "Zur Person" stellen wir Ihnen schließlich die Kognitions- und Neurowissenschaftlerin Ina Bornkessel vor. Die Leiterin der unabhängigen Nachwuchsgruppe Neurotypologie in Leipzig erforscht, warum die Menschen so viele unterschiedliche Sprachen sprechen, obwohl ihre Gehirne immer gleich aufgebaut sind.

Dem Heft liegt der GEOMAX "Vom Dotcom zum Cluster - wie Gründergeist das Wirtschaftswachstum ankurbelt" bei.

MaxPlanckForschung erscheint viermal im Jahr. Das Wissenschaftsmagazin kann bei der Pressestelle der Max-Planck-Gesellschaft oder über unser Webformular abonniert werden. Der Bezug ist kostenfrei.

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Elektron Silizium

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Europaweit erste Patientin mit neuem Hybridgerät zur Strahlentherapie behandelt

19.07.2018 | Medizintechnik

Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum

19.07.2018 | Biowissenschaften Chemie

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics