Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker ringen Laserblitzen mehr Leistung ab

14.11.2007
Viele Physiker, Chemiker, Biologen und Materialwissenschaftler träumen davon, das Verhalten von Atomen und Elektronen direkt beobachten zu können. Das allerdings geht nur mit Hilfe extrem kurzer Röntgenblitze.

Über Fortschritte auf diesem Gebiet berichten Physiker von der Universität Würzburg gemeinsam mit Kollegen aus Wien und München in der Zeitschrift "Nature Physics".

Den Blick durchs Lichtmikroskop auf die Zellen einer Zwiebel dürfte jeder Schüler kennen. Will er aber tiefer in den Mikrokosmos eindringen, dann reicht das sichtbare Licht nicht aus, um die winzigen Strukturen abbilden zu können. Die Position von Atomen etwa lässt sich nur mit Röntgenstrahlung bestimmen. Will man dann auch noch die Bewegungen der Atome erkennen, ist gepulste Röntgenstrahlung erforderlich, also eine Abfolge von Röntgenblitzen.

"Die Pulsdauer entspricht der Belichtungszeit einer Kamera. Sie muss so kurz sein, dass sich in dieser Zeit die Atome nicht substanziell bewegen, sonst wird das Bild unscharf", erklärt Christian Spielmann vom Physikalischen Institut der Uni Würzburg. Allerdings spricht der Professor hier nicht über typische Kamera-Belichtungen im Bereich von Tausendstel Sekunden. Vielmehr meint er billionstel bis billiardstel Sekunden oder, um in der Sprache der Physiker zu reden, Femto- bis Attosekunden.

Zur Erzeugung derart kurzer Röntgenpulse verfolgt die Forschung zwei Strategien. Beim Deutschen Elektronen-Synchrotron DESY, einer Großforschungseinrichtung in Hamburg, wird hierfür ein Röntgenlaser entwickelt. Die Münchener, Wiener und Würzburger Physiker dagegen verfolgen einen anderen Ansatz, der sich ohne Weiteres in einem Universitätslabor realisieren lässt. An der Technischen Universität Wien lenken sie in einer Vakuumkammer Laserblitze durch Röhrchen, die mit konzentriertem Helium gefüllt sind. "Dabei entstehen die kürzesten Röntgenpulse, die zurzeit überhaupt hergestellt werden können. Sie dauern nur wenige hundert Attosekunden", sagt Spielmann.

"Leider ist dieses Verfahren nicht sehr effizient: Wenn Sie ein Watt Laserleistung hineinschicken, bekommen sie weniger als ein millionstel Watt Röntgenleistung heraus", bedauert der Physiker. Gemeinsam mit dem Forscherehepaar Enikö und József Seres von der Uni Würzburg und seinen Münchener und Wiener Kollegen beschreibt er nun in Nature Physics einen neuen Ansatz zur Erhöhung der Röntgenstrahlintensität. Dabei werden die Laserblitze nicht nur durch ein einziges Gasröhrchen geschickt, sondern durch zwei. Der Clou daran: Dadurch verdoppelt sich die Ausbeute an Röntgenintensität nicht nur, sondern ist gleich bis zu vier Mal so hoch.

Eine wundersame Mehrung? "Wir erklären das durch die kohärente Überlagerung der beiden Signale", so Spielmann. Dieses Phänomen der sei für den Bereich des sichtbaren Lichtes seit Langem bekannt. Bislang nahmen die Wissenschaftler an, dass es zur Steigerung der Effizienz von Röntgenstrahlung nicht vernünftig zu realisieren sei. Doch da haben sie sich offenbar getäuscht. Der Schlüssel zum Gelingen liegt den Forschern zufolge im Einsatz sehr intensiver und sehr kurzer Laserpulse. Sie beschreiben nun auch, welcher Druck im Helium herrschen muss und in welchem Abstand voneinander sich die Gasröhrchen befinden müssen, damit der Überhöhungseffekt eintritt.

Jetzt denken sie daran, die Zahl der Gasröhrchen weiter zu erhöhen und damit den Laserpulsen noch mehr Röntgenintensität abzuringen. Mit dieser verbesserten Methodik hoffen sie dann "auf anspruchsvollere Untersuchungen" zur direkten Beobachtung von Atomen - denn bislang konnten sie "nur" abbilden, wie Silicium-Atome anfangen zu schwingen, wenn sie erwärmt werden. Langfristig aber streben die Physiker nach Höherem - etwa in Echtzeit zu beobachten, wie große Moleküle ihre Form ändern, wenn sie mit anderen Molekülen eine Bindung eingehen.

"Coherent superposition of laser-driven soft-X-ray harmonics from successive sources", J. Seres (1,2), V. S. Yakovlev (3), E. Seres (1,2), Ch. Streli (4), P. Wobrauschek (4), Ch. Spielmann (2)& F. Krausz (3,5), Nature Physics, online publiziert am 11. November 2007, DOI: 10.1038/nphys775

1. Institut für Photonik, Technische Universität Wien, A-1040 Wien, Austria
2. Physikalisches Institut EP1, Universität Würzburg, D-97074 Würzburg, Germany
3. Department für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany
4. Atominstitut der Österreichischen Universtitäten, Technische Universität Wien, A-1020 Wien, Austria

5. Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany

Korrespondenz an: F. Krausz, krausz@lmu.de

Weitere Informationen: Prof. Dr. Christian Spielmann, T (0931) 888-5739, spielmann@physik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.physik.uni-wuerzburg.de

Weitere Berichte zu: Atom Gasröhrchen Physik Röntgenstrahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics