Ist der Kaffee im fahrenden ICE kälter oder wärmer?

Augsburger Physikern ist es in Zusammenarbeit mit spanischen Kollegen gelungen, ein offenes und vielfach kontrovers diskutiertes Problem der Thermodynamik und der Einsteinschen Relativitätstheorie zu klären [Phys. Rev. Lett. 99, 170601 (2007)].

Mittels molekular-dynamischer Simulationen konnten sie zeigen, dass bei Wahl eines geeigneten Thermometers die Temperatur eines Körpers nicht von dessen Bewegungszustand abhängt. Mit anderen Worten: Die Kaffee-Temperatur in einem sehr schnell fahrenden Zug erscheint weder höher noch niedriger als in einem langsam fahrenden.

Sowohl in der renommierten Zeitschrift Nature [Nature 450, 4-5 (2007)] als auch vom American Institute of Physics [http://www.aip.org/pnu/2007/split/843-1.html] wurden die interessanten Ergebnisse aus Augsburg und Sevilla bereits kommentiert.

Thermodynamik und Einsteinsche Relativitätstheorie sind neben der Quantenmechanik die Eckpfeiler der modernen Physik. Im Gegensatz zu speziellen Teilgebieten wie der Akustik oder der Optik bilden sie ein allgemeines Rahmenwerk, das sämtliche Aspekte der Physik umfasst und beeinflusst. Die konsistente Vereinigung von Thermodynamik und Relativitätstheorie ist somit von zentraler Bedeutung; seit Beginn des vorherigen Jahrhunderts bereits wird sie intensiv diskutiert.

Vor Bekanntwerden der speziellen Relativitätstheorie im Jahre 1905 wurde angenommen, dass sich die Teilchengeschwindigkeiten in einem Gas gemäß einer Gaußschen Statistik verteilen. Letztere erlaubt prinzipiell auch Geschwindigkeitswerte, die die Lichtgeschwindigkeit überschreiten. Wie bereits Planck richtig erkannte, steht dies jedoch im Widerspruch zur Einsteinschen Relativitätstheorie, derzufolge massenbehaftete Teilchen sich nicht schneller als Licht bewegen dürfen. Damit ist also im Rahmen der Relativitätstheorie die ursprünglich angenommene Gaußsche Geschwindigkeitsverteilung so zu ersetzen, dass keine Überlichtgeschwindigkeiten mehr auftreten können.

Doch wie sieht nun die tatsächlich richtige relativistische Geschwindigkeitsverteilung aus? Zu dieser Frage finden sich in der wissenschaftlichen Literatur verschiedene kontrovers diskutierte Vorschläge. Um hier Klarheit zu schaffen, haben die Augsburger Physiker Jörn Dunkel, Prof. Dr. Peter Talkner und Prof. Dr. Dr. h. c. mult. Peter Hänggi am Lehrstuhl für Theoretische Physik I der Universität Augsburg in Zusammenarbeit mit ihren spanischen Kollegen Dr. David Cubero und Dr. Jesus Casado von der Universität Sevilla umfangreiche Simulationen zur Molekulardynamik relativistischer Gase durchgeführt und dabei mit hoher Genauigkeit eine Verteilung bestätigt, die bereits im Jahre 1911 von Ferencz Jüttner postuliert wurde.

Darüber hinaus klären die Computer-Experimente der Augsburger Forscher und ihrer spanischen Kollegen in anschaulicher Weise, wie sich das Konzept der Temperatur in die Relativitätstheorie einbetten lässt. Sie zeigen, wie man anhand statistischer Daten ein Thermometer konstruieren kann, das die Temperatur schneller relativistischer Teilchen zu bestimmen vermag.

Die Spezielle Relativitätstheorie besagt u. a., dass sich die Länge eines bewegten Stabes vom ruhenden Beobachter aus gesehen verringert. Im Jahre 1907 schlugen Planck und Einstein vor, dass sich analog auch die absolute Temperatur eines bewegten Körpers verringern sollte. Andere große Physiker wie Eddington argumentierten demgegenüber für eine Temperaturerhöhung, während einige Autoren die Auffassung vertraten, dass sich die Temperatur nicht ändere.

„Diese Verwirrung“, so Peter Hänggi, „geistert bis zum heutigen Tag in der Physik herum. Unsere Simulationen geben diesbezüglich zumindest für Systeme in einer Dimension eine klare Antwort: Bei Verwendung eines geeigneten statistischen Thermometers hängt die Temperatur eines Gases nicht von seiner Bewegung relativ zum Beobachter ab, ein mit konstanter Geschwindigkeit bewegtes Gas erscheint also weder erhitzt noch abgekühlt.“

Kontakt und weitere Informationen:

Prof. Dr. Dr. h. c. mult. Peter Hänggi
Lehrstuhl für Theoretische Physik I
Universität Augsburg
86135 Augsburg
Telefon 0821/598-3250
peter.hanggi@physik.uni-augsburg.de

Media Contact

Klaus P. Prem idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer