Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leitungselektronen in flagranti erwischt

25.10.2007
Max-Planck-Forschern gelingt erste Attosekunden-Messung in Festkörpern

Um in Festkörpern von einem Atom zum nächsten zu gelangen, benötigen Elektronen nur einige zehn Attosekunden (10-18 s). Diese unvorstellbar kurze Zeitspanne markiert das Geschwindigkeitslimit aller elektronischen Prozesse. Zu dieser Grenze vorzustoßen und damit zu einer "Höchstgeschindigkeitselektronik" zu kommen, setzt zunächst voraus, den Elektronentransport in Festkörpern mit einer zeitlichen Auflösung im Attosekunden-Bereich zu verfolgen. Erst dann lässt sich daran denken, den Prozess auch technisch zu steuern. Dieses erste Ziel hat jetzt ein internationales Team am Max-Planck-Institut für Quantenoptik in Garching bei München erreicht. (Nature, 25. Oktober 2007)

Gemeinsam mit Wissenschaftlern aus Österreich, Ungarn, Deutschland und Spanien hat Adrian Cavalieri (USA) Unterschiede in den Flugzeiten von Elektronen beim Durchqueren weniger Atomlagen in einem Kristall bestimmt. Dieses Experiment, das die erste Attosekunden-Messung in Festkörpern darstellt, wird auf der Titelseite der jüngsten Nature-Ausgabe gefeiert. Eine ungefähre Vorstellung davon, welche zeitlichen Dimensionen die Forscher in ihrem Versuch erschlossen haben, mag eine Vergleichsrechnung liefern: Eine Attosekunde verhält sich zu einer Sekunde wie eine Sekunde zu rund 300 Milliarden Jahren.

Effizientere Gesundheitsvorsorge

Moderne Elektronik beruht auf dem kontrollierten Elektronentransport durch Nanometer-Schaltkreise. Sie findet sich etwa in Computern, Kommunikationsgeräten und Messinstrumenten. Die Motivation, immer schnellere Elektronik zu entwickeln, kommt aus vielen Richtungen: Schnellere Computer und empfindlichere Geräte würden es erlauben, Naturkatastrophen besser vorherzusagen; leistungsstärkere Rechner führen zu immer ausgefeilteren Untersuchungsmethoden und gestatten dadurch tiefere Einblicke in die Funktionsweise der Natur. Mit Hochgeschwindigkeits-Kommunikationssystemen werden sich eines Tages vielleicht ferngesteuert Operationen durchführen lassen, und modernste elektronische Geräte in der Medizintechnik machen die Gesundheitsversorgung insgesamt effizienter.

In modernen elektronischen Schaltkreisen werden die Elektronen von einer Mikrowellenspannung durch Nanostrukturen gejagt, der elektrische Strom wird dadurch innerhalb von Nanosekunden an- und abgeschaltet. Die durch den Mikrochip vorgegebene Schaltzeit bestimmt beispielsweise die Zahl der Rechenoperationen, die ein Computer pro Sekunde ausführen kann.

Im Takt von Attosekunden

Die Schaltgeschwindigkeit ist begrenzt durch die Zeit, die Elektronen brauchen, um durch die Strukturen zu laufen, in denen Ströme ein und ausgeschaltet werden. Dabei gilt: Je kleiner die Struktur, desto höher die erreichbare Schaltgeschwindigkeit und die Dichte des Informationsflusses. Unter anderem aus diesem Grund möchte man Schaltkreise immer kleiner gestalten. Die Entfernung zwischen benachbarten Atomen in einem Kristallgitter oder in einem Molekül ist vermutlich die kürzeste Strecke, über die elektrischer Strom Information übertragen kann. Die Zeit, die ein Elektron benötigt, um atomare Abstände zu überwinden, ist daher naturgemäß in Attosekunden getaktet. Das impliziert, dass die Richtung des elektrischen Stroms in Schaltkreisen atomarer Dimensionen prinzipiell mehr als eine Billion Mal in der Sekunde gewechselt werden könnte, also mit einer Frequenz von bis zu mehreren Petahertz - hunderttausend Mal öfter als es die heutige Elektronik erlaubt.

Der erste Schritt auf dem langen Weg zur Petahertz-Elektronik ist die Entwicklung von Techniken für die Echtzeitbeobachtung des elektrischen Ladungstransports in atomaren Strukturen - und dieser erste Schritt ist jetzt am Max-Planck-Institut für Quantenoptik gelungen: Die Forscher konnten die Bewegung von Elektronen durch wenige Atomlagen an die Oberfläche eines Festkörperkristalls in Echtzeit verfolgen.

Gemeinsam mit Mitarbeitern der Universitäten Bielefeld und Hamburg, sowie der TU Wien schickten die Wissenschaftler einen extrem ultravioletten Lichtpuls von 300 Attosekunden Dauer sowie einen Infrarot-Laserpuls aus wenigen, gut kontrollierten Schwingungen des elektrischen Felds auf die Oberfläche eines Wolframkristalls (Abbildung). Der Attosekunden-Puls dringt in den Kristall ein. Dort werden einige der im Puls transportierten Lichtpartikel (Photonen) verschluckt, wodurch sowohl lose gebundene Elektronen, die für die Leitung des elektrischen Stroms sorgen, als auch fest im Rumpf der Kristallatome gebundenen Elektronen freigesetzt werden.

Nachweis mit einem Flugzeitdetektor

Beide Arten von Elektronen werden gleichzeitig angeregt und eilen danach mit unterschiedlichen Geschwindigkeiten aus einer Tiefe von einigen Atomlagen an die Oberfläche. Die Leitungselektronen bewegen sich schneller fort als die Rumpfelektronen. Sobald die Elektronen an der Oberfläche ankommen, wird ihre ursprüngliche Geschwindigkeit durch das elektrische Feld des Laserpulses modifiziert - und diese Änderung lässt sich mit einem Flugzeitdetektor nachweisen. Da sich die Feldstärke des Laserpulses extrem schnell mit der Zeit ändert (eine halbe Schwingung des Laserwelle dauert 1250 Attosekunden), hängt die Geschwindigkeitsänderung vom Zeitpunkt ab, zu dem die Elektronen die Oberfläche erreichen.

Das ultraschnell oszillierende Laserfeld verändert also kontrolliert das Tempo der Elektronen. Und mit dieser Attosekunden-Stoppuhr entdeckte das Team, dass die Leitungselektronen etwa 110 Attosekunden früher als die Rumpfelektronen die "Ziellinie" (nämlich die Kristalloberfläche) erreichen. Daraus folgt, dass die freigesetzten Leitungselektronen sich innerhalb des Kristalls doppelt so schnell bewegen wie die aus den Atomrümpfen herausgerissenen Elektronen. Das Experiment demonstriert also die technische Möglichkeit, elektrischen Ladungstransport durch Atomlagen eines Festkörpers in Echtzeit zu beobachten und ebnet damit den Weg zur Entwicklung von ultraschnellen Schaltkreisen der Zukunft.

Originalveröffentlichung:

A. L. Cavalieri et al.
Attosecond spectroscopy in condensed matter
Nature, 25. Oktober 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Attosekunde Elektron Leitungselektron

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics