Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmische Röntgenstrahlung gibt Hinweis auf neue Form von Materie

17.04.2002



Tübinger Astronomen entdecken Stern, der aus Quarks besteht

Das Röntgenobservatorium CHANDRA, das seit 1999 von der NASA im Weltraum betrieben wird, hat einen Stern beobachtet, dessen "zu kleiner" Durchmesser möglicherweise neue Er-kenntnisse über die Struktur der Materie liefert. Diese Entdeckung unterstreicht den engen Zusammenhang zwischen kosmischen Objekten und der Physik der Elementarteilchen. Die CHANDRA-Beobachtung des Objekts mit dem Katalognamen RXJ1856.3-3754 legt nahe, dass die Materie im Inneren des Sterns noch dichter ist als die Atomkernmaterie, die wir von der Erde her kennen. Es ist daher möglich, das dieser Stern aus freien Quarks besteht.

Durch die Kombination von CHANDRA- und Hubble-Teleskop-Daten haben Astronomen herausgefunden, dass RXJ1856.3-3754 wie ein Festkörper mit einer Temperatur von 700.000 Grad strahlt, also mehr als 100 mal heißer als unsere Sonne ist. Der Durchmesser beträgt nur ungefähr 11 Kilometer. Ein solcher Durchmesser ist zu klein, als dass er mit Standardmodellen für Neutronensterne erklärt werden könnte, welche die bisher extremste bekannte Form von Materie darstellen. Daher lassen alle Beobachtungen dieses Sterns zusammengenommen den Schluss zu, dass er nicht aus Neutronen besteht, sondern aus Quarks. Quarks werden als fundamentale Bausteine der Atomkerne betrachtet, sie sind allerdings bisher niemals außerhalb eines Atomkerns als freie Teilchen beobachtet worden.

Dies ist der wesentliche Inhalt einer Publikation, die im "Astrophysical Journal" am 20.06.2002 erscheinen wird. Das amerikanisch-deutsche Astronomen-Team wird geleitet von Dr. Jeremy Drake vom "Harvard-Smithsonian Center for Astrophysics" (USA). Zum Team gehören auch Dr. Stefan Dreizler und Prof. Dr. Klaus Werner vom Institut für Astronomie und Astrophysik der Universität Tübingen.

Ein Fingerhut voll Neutronensternmaterial wiegt Milliarden von Tonnen. Seine außergewöhnlich hohe Dichte entspricht derjenigen von eng zusammengepackten Atomkernen. In normaler Materie dagegen sind Atomkerne weit voneinander entfernt. Atomkerne bestehen aus Neutronen und Protonen, diese wiederum bestehen aus noch kleineren Teilchen, die als Quarks bezeichnet werden und als Grundbausteine der Materie gelten. Große Teilchenbeschleuniger werden benutzt, um die Kräfte zwischen den Quarks und die Struktur der Atomkerne zu untersuchen, indem man Atomkerne mit extrem hoher Geschwindigkeit aufeinander prallen lässt und deren Bruchstücke studiert. Im Europäischen Kernforschungszentrum wurde tatsächlich im Jahr 2000 die Entdeckung eines neuen Zustandes der Materie, des Quark-Gluon-Plasmas, angekündigt.

Neutronensterne stellen das Endstadium der Entwicklung massereicher Sterne dar. Der etwa zwei Sonnenmassen schwere Eisenkern eines solchen massereichen Sterns kollabiert unter seinem eigenem Gewicht zu einem Neutronenstern mit nur etwa 20 Kilometern Durchmesser. Der überwiegende Teil der Sternhülle wird in Form einer Supernova-Explosion vom Stern fortgeschleudert. Es ist nicht klar, ob ein Quarkstern nun während einer Supernova-Explosion entstehen kann oder erst später ein Neutronenstern einen sogenannten Phasenübergang zu einem Quarkstern vollzieht.

Die Astronomen sind allerdings noch vorsichtig mit ihrer Schlussfolgerung. Im Prinzip kann man die Beobachtungen von RXJ1856.3-3754 auch mit einem normalen Neutronenstern und einem heißen Fleck auf seiner Oberfläche erklären. Ein solches Modell wird von Dr. Fred Walter (State University of New York, Stony Brook) untersucht. Walter ist einer der Entdecker von RXJ1856.3-3754, der ursprünglich 1996 mit dem deutschen Röntgensatelliten RO-SAT gefunden wurde. Allerdings würde man von einem solchen Modell her mit großer Wahrscheinlichkeit eine variable Röntgenstrahlung erwarten, was allerdings aufgrund des Beobachtungsmaterials so gut wie ausgeschlossen werden kann.

Unabhängig davon wie die ungewöhnlichen Beobachtungen von RXJ1856.3-3754 letztendlich erklärt werden können, sie zeigen, dass es möglich ist, astrophysikalische Untersuchungen des Universums dazu zu nutzen, fundamentale physikalische Fragestellungen zu untersuchen.

Weitere Informationen:

Dr. Stefan Dreizler Prof. Dr. Klaus Werner Institut für Astronomie und Astrophysik Abteilung Astronomie Sand 1 72076 Tübingen

Tel. 07071 2978612 oder 07071 2978601

E-Mail: dreizler@astro.uni-tuebingen.de oder werner@astro.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://astro.uni-tuebingen.de

Weitere Berichte zu: Atomkern Neutronenstern RXJ1856

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung
21.02.2020 | Universität Paderborn

nachricht 10.000-mal schnellere Berechnungen möglich
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics