Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reise ins Gehirn

11.07.2007
Das neue Magnetresonanzzentrum am Max-Planck-Institut für biologische Kybernetik nimmt am 12. Juli seinen Betrieb auf.

Die Gedanken sind bunt - zumindest im Magnetresonanztomografen. Doch wie genau im Gehirn Bilder und Sätze entstehen, ist noch nicht bekannt. Im gerade fertig gestellten Magnetresonanzzentrum am Max-Planck-Institut für biologische Kybernetik wollen Forscher diesem Rätsel nun auf den Grund gehen. Mit drei neuen Magnetresonanztomografen (MRT) werfen sie einen noch genaueren Blick in die Welt im Kopf. Als Leiter des Zentrums konnte der MRT-Pionier Kamil Ugurbil aus den USA gewonnen werden. Mit einem 16,4-Tesla-, einem 9,4-Tesla- und einem 3-Tesla-MRT werden er und seine Mitarbeiter ab dem 12. Juli 2007 die Arbeit aufnehmen und den Stoffwechsel des Gehirns mit höherer Genauigkeit als bisher untersuchen können.


Einblick in den Kopf: Mit den drei Tomografen des Magnetresonanzzentrums untersuchen Wissenschaftler Menschen und Tiere. Hier zu sehen ist der 9,4-Tesla-Magnet mit einer Liegefläche für die Probanden. Bild: MPI für biologische Kybernetik

Zwei Prozent unserer Körpermasse verbrauchen 20 Prozent der gesamten Energie: das Gehirn braucht für seine Leistungen viel Treibstoff. Rund 100 Milliarden Nervenzellen, das ist eine eins mit 12 Nullen, koordinieren unsere fünf Sinne und lassen den Menschen fühlen, kommunizieren und denken. Selbst die besten Rechner weltweit haben bei einem Bruchteil der Rechenleistung des Gehirns den 10- bis 100-fachen Strombedarf. Wie schaffen das die 100 Billionen Synapsen? Unter dem Direktor Kamil Ugurbil werden Forscher im neuen Magnetresonanzzentrum (MRZ) des Tübinger Max-Planck-Instituts für biologische Kybernetik stärkere Magnetfelder nutzen, um mehr Details in Funktionsweise und Stoffwechsel des Gehirns zu erforschen.

"Bei der Magnetresonanztomografie richten sich die Atomkerne im Körper zunächst in einem starken Magnetfeld aus. Kurze Radiowellenimpulse bringen sie dann aus dem Gleichgewicht, wodurch sie wie ein Kreisel rotieren", sagt Direktor Ugurbil. Da dieses Verfahren den Spin der Atomkerne nutzt, heißt es auch Kernspintomografie. "Wenn die Kerne rotieren, wirken sie wie kleine Sendeantennen und induzieren in körpernahen Spulen einen Strom, der gemessen wird", erklärt Ugurbil. Nach diesem Prinzip bringt der Tomograf Atomkerne im Gehirn oder auch in anderen Körperteilen schichtweise zum Senden. Der Rechner setzt dann die vielen Schichtbilder mit unterschiedlichen Signalen zu einem dreidimensionalen Bild zusammen. 2003 erhielten Paul Lauterbur und Peter Mansfield für die Entwicklung und genaue Steuerung dieser Technologie den Nobelpreis für Medizin.

"Je höher das Magnetfeld, desto stärker werden die aufgezeichneten Signale. Mit höheren Feldern können deshalb Bilder mit höherer Empfindlichkeit und Ortsauflösung aufgenommen werden", so Ugurbil. Im klinischen Bereich werden so fast ausschließlich die häufig vorkommenden Wasserstoffatome untersucht. Die höheren Magnetfelder der Tomografen im neuen MRZ ermöglichen es jetzt den Wissenschaftlern, andere chemische Elemente zu messen, die im menschlichen Körper seltener vorkommen. "Mit den stärkeren Magneten wollen wir auch die Elemente Kohlenstoff, Sauerstoff, Fluor und Phosphor im Gehirn darstellen", so Ugurbil. Diese MR-aktiven Stoffe geben unter anderem Aufschluss, wie die Neurotransmitter Glutamat oder GABA im Gehirn wirken. "So können wir der Schaltzentrale bei der Arbeit zugucken", sagt Ugurbil. Dafür wurden völlig neue MRT-Systeme gebaut: Mit einem 9,4-Tesla-Tomograf, dem größten MRT der Welt, werden die Forscher Menschen untersuchen. Mit einem 16,4-Tesla-System, dem weltweit stärksten, werden sie in Kleintierhirne schauen. Ein klinischer 3-Tesla-Magnet vervollständigt die Instrumente im Zentrum.

Starke und große Magnete alleine reichen aber nicht. Um die Aussagekraft der Bilder weiter zu verbessern, forschen die Wissenschaftler auch an neuartigen Kontrastmitteln. Sie werden dem Körper zugeführt, um bestimmte Signale zu verstärken oder abzuschwächen. "Wir entwickeln intelligente Kontrastmittel, die von gesunden und kranken Zellen unterschiedlich aufgenommen werden, die also nur in bestimmten Zielzellen, beispielsweise Tumorzellen, aktiv werden", erklärt Ugurbil. So können auch bestimmte Typen von Nervenzellen gezielt dargestellt und ihre Funktionsweise untersucht werden.

"Die weltweit einmalige Kombination innovativer Techniken und Geräte im neuen Magnetresonanzzentrum ermöglicht neuartige Einblicke in die hochkomplizierten Vorgänge im Gehirn", sagt Kamil Urgurbil: "Wir haben uns zum Ziel gesetzt, am Ende die funktionellen und bioenergetischen Vorgänge der Nervenzellen im großen Maßstab zu kartografieren."

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atomkern Kybernetik Magnetfeld Magnetresonanzzentrum Nervenzelle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Macht Sinn: Fraunhofer entwickelt Sensorsystem für KMU

15.08.2018 | Energie und Elektrotechnik

Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

15.08.2018 | Informationstechnologie

FKIE-Wissenschaftler präsentiert neuen Ansatz zur Detektion von Malware-Daten in Bilddateien

15.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics