BMBF gibt grünes Licht für Weltneuheit POWTEX

Mit diesem Hochleistungsinstrument ist es möglich, die Kristallstruktur von Materialien, das heißt die räumliche Anordnung ihrer Atome, methodisch neu mit einem thermischen Neutronenstrahl zu analysieren. So können beispielsweise die Strukturen innovativer Akku-Materialien für Handys im Hinblick auf verlässlichere Stromversorgung oder magnetische Materialien zum Speichern digitaler Information analysiert werden. „Mit diesem Gerät betreten wir messtechnisches Neuland, ein vergleichbares Gerät für die Festkörperchemie und Materialforschung gibt es nirgendwo sonst auf der Welt“, freut sich Univ.-Prof. Dr.rer.nat. Richard Dronskowski, der Antragsteller und Leiter des Instituts für Anorganische Chemie an der RWTH. Gemeinsam mit seinem Jülicher Kollegen Prof. Dr. Thomas Brückel koordiniert und betreut er das Großprojekt, das als ein weiterer Baustein der Forschungsallianz Aachen-Jülich gewertet werden kann.

Mit POWTEX werden Kristallstrukturanalysen durchgeführt und damit so genannte Beugungsbilder erzeugt. „Das Verfahren funktioniert ganz ähnlich wie die Röntgenbeugung“, erklärt Prof. Dronskowski, „allerdings geschieht das Durchleuchten der Kristalle mit Hilfe von Neutronenstrahlen und unter Berücksichtigung ihrer Flugzeit.“ Das Beugungsbild gibt die Wechselwirkung des Neutronenstrahls mit den Atomen zu erkennen. Mittels Computerprogrammen berechnet man daraus die exakte geometrische Anordnung der Atome im Material. Diese Anordnung entscheidet beispielsweise darüber, ob ein Material bei identischer chemischer Zusammensetzung magnetische Eigenschaften besitzt oder nicht. Zeitgleich wird durch die Kristallstrukturbestimmung auch die exakte chemische Zusammensetzung geklärt.

Da die benötigten Neutronen durch Kernspaltung entstehen, wird POWTEX direkt am Forschungsreaktor FRM-2 in München-Garching gebaut. Rund 3,8 Millionen Euro beträgt die Investitionssumme des rund dreißig Meter langen Geräts, wovon das BMBF nun 1,7 Millionen Euro für die erste Bauphase bewilligte. POWTEX wird unter Beteiligung der Mitarbeiter des Forschungszentrums Jülich erstellt, denn dort liegt die Neutronenkompetenz. Wenn das Hochleistungsgerät fertiggestellt ist, steht es sowohl Festkörperchemikern als auch Material- und Geowissenschaftlern zur Verfügung. Forschungsschwerpunkt der Anorganischen Chemiker an der RWTH sind unter anderem innovative stickstoffhaltige und intermetallische Verbindungen. Prof. Richard Dronskowski: „Die Basis unserer heutigen Technologie – Computer, Laser, Handy, digitale Fotografie, iPods oder DVDs – bilden chemische Verbindungen, die über 50 und bisweilen 100 Jahre alt sind. Nun muss mit ganz neuartigen chemischen Verbindungen die Basis für die Technologie des 22. Jahrhunderts gelegt werden.“

von Ilse Trautwein

Weitere Informationen bei:
Prof. Richard Dronskowski, Direktor des Instituts für Anorganische Chemie
Landoltweg 1, 52056 Aachen
Tel. 0241/8093642
E-Mail: drons@HAL9000.ac.rwth-aachen.de

Media Contact

Thomas von Salzen idw

Weitere Informationen:

http://www.rwth-aachen.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer