Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmische Kicks verhelfen Schwarzen Löchern zur Flucht

08.06.2007
Physiker der Universität Jena publizieren neue Erkenntnisse zur Kollision Schwarzer Löcher

Wenn zwei Schwarze Löcher zusammenstoßen, dann bebt das All. Nicht nur, dass sie zu einem einzigen, größeren Schwarzen Loch verschmelzen. "Dieses kann sich gegenüber den Sternen in seiner Umgebung mit großer Geschwindigkeit bewegen, als ob es bei der Kollision zusätzlich einen 'Tritt' von der Relativitätstheorie erhalten hätte", sagt Prof. Dr. Bernd Brügmann von der Friedrich-Schiller-Universität Jena.


Zwei Schwarze Löcher aus verschiedenen räumlichen Perspektiven. Sie vollführen einen "letzten Tanz" bevor sie verschmelzen und sich in eine gemeinsame Richtung davon bewegen. Abbildung: TPI/FSU

Der Inhaber des Lehrstuhls für Gravitationstheorie und sein internationales Forscherteam haben jetzt herausgefunden, dass dieser extra "Kick" wesentlich größer ausfallen kann, als bisher erwartet. Wie Prof. Brügmann, Dr. José González (Mexiko), Dr. Mark Hannam (Neuseeland), PD Dr. Sascha Husa (Österreich) und Dr. Ulrich Sperhake (Deutschland) in der aktuellen Ausgabe der Fachzeitschrift "Physical Review Letters" veröffentlichen, kann der Kick theoretisch sogar so groß sein, dass Schwarze Löcher aus einer Galaxie herausgeschleudert werden.

Schwarze Löcher sind Ungetüme der Schwerkraft, die nicht einmal Licht ihrem Bannkreis entkommen lassen. Bei ihrer Kollision werden enorme Energiemengen frei, die Raum und Zeit in wilde Schwingungen versetzen. "Solche Gravitationswellen breiten sich normalerweise in alle Richtungen aus", weiß Prof. Brügmann, der sich der Erforschung dieser Wellen verschrieben hat. "Unter bestimmten Umständen kann es aber passieren, dass eine Abstrahlungsrichtung bevorzugt wird", so der Sprecher des Sonderforschungsbereichs "Gravitationswellenastronomie" (Transregio 7) weiter. Die Kollisionswellen bewegen sich dann bevorzugt in die eine, das entstandene Schwarze Loch in die entgegengesetzte Richtung.

... mehr zu:
»Galaxie »Löcher

Wie groß der auf diese Weise entstehende Kick ist, hängt davon ab, wie unterschiedlich die Massen der Schwarzen Löcher sind, und wie schnell sie sich um ihre eigene Achse drehen. Bislang sind Kicks jedoch lediglich theoretisch vorhersagbar, da sich Schwarze Löcher in der Praxis nur schwer beobachten lassen. Erst seit kurzem können einige wenige Gruppen weltweit den gesamten Verschmelzungsprozess von Schwarzen Löchern im Computer simulieren und so die resultierende Kick-Geschwindigkeit berechnen. Lange Zeit hatten sich Theoretiker hauptsächlich auf Systeme ohne eigene Drehbewegung konzentriert, da sich diese besser berechnen lassen.

"Die große Überraschung ist, wie viel größer Kicks bei Schwarzen Löchern mit Eigendrehung sein können", sagt Prof. Brügmann, der mit seinem Forschungsteam zeigt, dass Schwarze Löcher bei der Kollision Kick-Geschwindigkeiten von 2.500 Kilometer pro Sekunde erreichen. Dazu sei allerdings eine spezielle, in der Natur womöglich sehr seltene Ausgangslage der Schwarzen Löcher erforderlich, bei der diese in entgegengesetzter Richtung und senkrecht zur Umlaufachse rotieren. Frühere Berechnungen ergaben lediglich Geschwindigkeiten von bis zu 500 Kilometern pro Sekunde. Aufgrund der neuen Ergebnisse gibt es Vorhersagen eines amerikanischen Forschungsteams, dass Kicks von bis zu 4.000 Kilometer pro Sekunde möglich sind.

Würde sich ein Schwarzes Loch mit einer solchen Geschwindigkeit durchs All bewegen, hätte das dramatische Konsequenzen. Normalerweise sind Schwarze Löcher in Sternenhaufen oder Galaxien durch die Schwerkraft gebunden. Je größer aber der Kick des Schwarzen Loches ist, umso wahrscheinlicher wird es, dass es der Anziehung seiner Galaxie entkommen kann. "Uns interessiert deshalb vor allem die Frage, ob der Kick ein Schwarzes Loch aus einer Galaxie herauskatapultieren kann", so Prof. Brügmann. Ab einer Geschwindigkeit von rund 2.000 Kilometern pro Sekunde, so schätzen die Forscher derzeit, könnten selbst supermassive Schwarze Löcher aus dem Zentrum von großen Galaxien herausgeschleudert werden. "Nach unseren neuen Erkenntnissen ist es also zumindest in extremen Ausnahmefällen denkbar, dass bei der Kollision von Schwarzen Löchern Irrläufer entstehen, die wie eine Rakete unaufhaltbar durchs Weltall rasen", resümiert Prof. Brügmann.

Originalpublikationen:
J. González, M. Hannam, U. Sperhake, B. Brügmann, S. Husa. Supermassive Recoil Velocities for Binary Black-Hole Mergers with Antialigned Spin. Physical Review Letters 98 (2007) im Druck

J. González, U. Sperhake, B. Brügmann, M. Hannam, S. Husa. The Maximum Kick from Nonspinning Black-Hole Binary Inspiral. Physical Review Letters 98 (2007) 091101

Kontakt:
Prof. Dr. Bernd Brügmann
Theoretisch-Physikalisches Institut der Friedrich-Schiller-Universität Jena
Max-Wien-Platz 1, D-07743 Jena
Tel.: 03641 / 947111
E-Mail: bernd.bruegmann[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: Galaxie Löcher

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

nachricht Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?
16.07.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungsnachrichten

Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

17.07.2018 | Energie und Elektrotechnik

Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

17.07.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics