PDI-Forscher ordnen einzelne Atome gezielt an

Wissenschaftler des Berliner Paul-Drude-Instituts für Festkörperelektronik (PDI) haben einzelne Atome unterschiedlicher chemischer Elemente gezielt zu individuellen Nanostrukturen zusammengesetzt und so Objekte vorgegebener Form und Größe auf der Längenskala einiger Milliardstel Meter erzeugt.

Damit maßgeschneiderte Nanostrukturen künftig für neue technologische Anwendungen erschlossen werden können, muss das Verhalten solcher Atomanordnungen im Detail verstanden werden. Hieran arbeitet das Team um Stefan Fölsch am PDI. Die Wissenschaftler ordneten unmagnetische Kupfer- und magnetische Kobalt-Atome nebeneinander auf einer kristallinen Kupfer-Oberfläche an. Auf diese Weise entstanden unterschiedlich lange Atomketten mit einer genau definierten Abfolge der atomaren Bausteine. Das Experiment erlaubt es den Angaben der Forscher zufolge, die Quantenzustände der Nanostruktur durch kontrollierte Zugabe von einzelnen Fremdatomen gezielt zu beeinflussen (J. Lagoute et al.: „Doping of monatomic Cu chains with single Co atoms“, in: Physical Review Letters, Online-Ausgabe vom 6. April).

Für ihre Experimente nutzten die Forscher Kobalt- und Kupfer-Atome, die sie unter Ultrahochvakuumbedingungen manipulierten. Als Werkzeug diente den PDI-Wissenschaftlern unter der Leitung von Stefan Fölsch ein Tieftemperatur-Rastertunnelmikroskop (englische Abkürzung: LT-STM). Damit erzeugten sie Paare sowie unterschiedlich lange Ketten von magnetischen und unmagnetischen Atomen. Je nach Zahl und Anordnung der Kobalt- und Kupfer-Atome variierten die elektronischen Eigenschaften der Atomkette. Das Elegante daran: Die Effekte lassen sich durch Konzepte der Lehrbuch-Physik verstehen, die üblicherweise zur Beschreibung von einfachen Molekülen angewendet werden. Grundlegende elektronische Eigenschaften können hierdurch auf einfache Weise vorhergesagt werden.

In Serie gehen wird die Nanostruktur-Produktion mit dem LT-STM freilich nicht. Zu aufwändig und kompliziert ist das Verfahren. „Doch unsere Methode verschafft uns ein viel versprechendes Modellsystem, um grundsätzliche Fragen von Quanteneffekten in maßgeschneiderten Nanostrukturen zu untersuchen“, sagt Stefan Fölsch. Er fügt hinzu: „Das ist auf lange Sicht von allerhöchster technologischer Relevanz.“

Weitere Informationen:
Dr. Stefan Fölsch
Tel.: 030-20377-459
foelsch@pdi-berlin.de

Media Contact

Josef Zens idw

Weitere Informationen:

http://www.fv-berlin.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer