Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kurz vorm Schmelzen

09.02.2007
Mit Röntgenstrahlen hat ein internationales Team von Wissenschaftlern, darunter auch zwei Forscher vom Max-Planck-Institut für Quantenoptik (Garching), erstmals die Veränderungen verfolgen können, die ein Festkörper kurz vorm Schmelzen durchläuft. (Science , 2. Februar 2007)

Die Messungen an einem relativ einfachen System - einem dünnen Film aus dem Halbmetall Wismut - fanden am Stanford Linear Accelerator Center (SLAC) (Stanford, USA) statt.

Die Messung demonstriert das hohe Potential der so genannten Anrege-Abfrage-Technik bei der zeitlichen Auflösung ultraschneller Vorgänge. Bei diesem Verfahren wird zunächst mit einem ultrakurzen Lichtpuls ein atomarer Prozess in dem Material in Gang gesetzt. Die sich daraus ergebenden Veränderungen werden mit Hilfe weiterer Lichtpulse ermittelt, die im Abstand von fest definierten Zeitverzögerungen auf das Objekt treffen.

In vorliegenden Experiment wurde ein 50 Nanometer dicker Film des Halbmetalls Wismut mit 70 Femtosekunden (1 Femtosekunde = 10-15 Sekunden) langen Lichtpulsen aus einem Titan-Saphir-Laser (Nahes Infrarot) in einen hochangeregten Zustand gebracht. Da die Laserenergie nicht ausreicht, um den Stoff zum Schmelzen zu bringen, kehren die Atome in weniger als einer Nanosekunde (ein Milliardstel einer Sekunde) in ihren Normalzustand zurück. Wie sich die Festkörperstruktur im Anschluss an die Anregung verändert, untersuchten die Forscher um David Fritz (SLAC), indem sie den Film mit Pulsen aus der (mittlerweile abgebauten) Sub-Picosecond Pulse Source (SPPS) am SLAC bombardierten.

Um die Vorgänge genau zeitlich rekonstruieren zu können, müssen die Wissenschaftler genau wissen, wann die anregenden Lichtpulse bzw. die Röntgenpulse auf das Material treffen. Das Problem dabei ist, dass zwar die Pulse des Infrarot-Lasers in genau und verlässlich definierten Zeitintervallen kommen, sich die Pulse der Röntgenstrahlen aus einem Linear-Beschleuniger aber nicht so gut steuern lassen. Mit Hilfe eines elektrooptischen Kristalls schafften es die beiden MPQ-Forscher, Dr. Reinhard Kienberger und Dr. Adrian Cavalieri, eine Art Stoppuhr zu entwickeln, mit der die relativen Ankunftszeiten der Pulse mit der erforderlichen Genauigkeit bestimmt werden konnten.

... mehr zu:
»Atom »Lichtpuls »SLAC

Sogleich beim Auftreffen des anregenden Laserpulses werden die Bindungen zwischen den Atomen im Festkörper schwächer. Der Atomkern gerät dadurch aus dem Gleichgewicht, so wie eine Murmel, die vom Boden einer Vertiefung auf die geneigten Wände angehoben wird. Losgelassen (also im Anschluss an den Laserpuls) rollt der Kern wieder in die Mitte der Vertiefung zurück, und bevor er sich dort - im Gleichgewichtszustand - niederlässt, vollführt er kleinste Schwingungen um den Tiefpunkt. Mit Hilfe der oben skizzierten Anrege-Abfrage-Technik bestimmten die Forscher die Frequenz dieser Schwingungen. Daraus konnten sie die Kräfte ermitteln, die die Atome zusammenhalten, und zwar in Abhängigkeit von der seit der Anregung verstrichenen Zeit.

Damit lässt sich erstmal eine zeitabhängige "Karte" der Potentialfläche des Festkörpers (aus der die inneratomaren Kräfte hervorgehen) rekonstruieren. Die Ergebnisse, die an diesem aus der Balance geratenen Wismut-Film gewonnen wurden, lassen sich überraschenderweise - mit nur geringfügigen Abänderungen - mit einem theoretische Modell erklären, das gewöhnlich Potentialflächen von Systemen im Gleichgewichtszustand beschreibt.

Die SPPS diente gleichsam als Testfeld für den neuen Freien-Elektronen-Laser (FEL), den Linac Coherent Light Source (LCLS), der jetzt am SLAC konstruiert wird. Mit dieser weit leistungsstärkeren Quelle wird man komplexere Systeme als Wismut, die unter Umständen eine Schlüsselrolle in anderen Gebieten wie der Medizin oder erneuerbaren Energien spielen, in ähnlicher Weise untersuchen können. Das Experiment stellt somit einen Meilenstein dar auf dem Weg, zukünftige FEL effizient als Werkzeuge zu benutzen. Forscher am MPQ und am SLAC sind an diesem Gebiet der Physik in gleicher Weise hochinteressiert.

[Heather Rock Woods, SLAC, Olivia Meyer-Streng, MPQ]

Kontact:
Dr. Reinhard Kienberger
Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: 49 - 89 / 32905 731
Fax: +49 - 89 / 32905 200
E-Mail: reinhard.kienberger@mpq.mpg.de
Dr. Adrian Cavalieri
Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 601
Fax: +49 - 89 / 32905 200
E-Mail: adrian.cavalieri@mpq.mpg.de
Max-Planck-Institut für Quantenoptik, Presse- und Öffentlichkeitsarbeit:
Dr. Olivia Meyer-Streng
Telefon: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Berichte zu: Atom Lichtpuls SLAC

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

nachricht Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?
16.07.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics